
Recitation Session Solutions, October 25 2017

Ex2.

To prove:

We want to prove P(list) for any list of type List[Int], where P(list) is defined as:

P(list) := list.foldLeft(z)(add) === z + sum(list), for all z of type Int

The proof proceeds by structural induction on list.

Case Nil:

We want to show P(Nil).
Let z be an arbitrary expression of type Int.

Nil.foldLeft(z)(add) === (by 3) z

=== (by 8) z + 0
=== (by 1) z + sum(Nil)

Which proves P(Nil).

Case x :: xs:

We want to show P(x :: xs), assuming P(xs).

Induction hypothesis: P(xs)

(IH) xs.foldLeft(z’)(add) === z’ + sum(xs), for all z’ of type Int

Let z be an arbitrary expression of type Int.

(x :: xs).foldLeft(z)(add)
=== (by 4) xs.foldLeft(add(z, x))(add)

=== (by IH) add(z, x) + sum(xs)

=== (by 5) (z + x) + sum(xs)

=== (by 7) z + (x + sum(xs))

=== (by 2) z + sum(x :: xs)

Which proves P(x :: xs).

This completes the proof.

