Recitation Session Solutions, October 25 2017

Ex2.

To prove:

We want to prove P(list) for any list of type List[Int], where P(list) is defined as:

```
P(list) := list.foldLeft(z)(add) === z + sum(list), for all z of type Int
```

The proof proceeds by structural induction on list.

Case Nil:

We want to show P(Nil). Let z be an arbitrary expression of type Int.

<u>Nil.foldLeft(z)(add)</u>	===	(by 3)	<u>Z</u>
	===	(by 8)	z + <u>0</u>
	===	(by 1)	z + sum(Nil)
Which proves $P(Ni1)$			

Which proves P(Nil).

Case x :: xs:

We want to show P(x :: xs), assuming P(xs).

Induction hypothesis: P(xs)

(IH) xs.foldLeft(z')(add) === z' + sum(xs), for all z' of type Int

Let z be an arbitrary expression of type Int.

(x :: xs).foldLeft(z)(add)

===	(by 4)	<pre>xs.foldLeft(add(z, x))(add)</pre>
===	(by IH)	<u>add(z, x)</u> + sum(xs)
===	(by 5)	<u>(z + x) + sum(xs)</u>
===	(by 7)	z + <u>(x + sum(xs))</u>
===	(by 2)	z + sum(x :: xs)

Which proves P(x :: xs).

This completes the proof.