
Introduction
Turning patterns into formulas

Implementation

Verifying pattern matching with guards in Scala

Mirco Dotta, Philippe Suter

EPFL – SAV ’07

June 20, 2007
version 0.1a

Mirco Dotta, Philippe Suter Verifying pattern matching with guards in Scala

Introduction
Turning patterns into formulas

Implementation

Outline

Introduction
Scala
reasoning about pattern matching
status in Scala
motivation
project overview

Turning patterns into formulas
general idea
formalization of concepts
axioms
patterns

Implementation
current status
future work

Mirco Dotta, Philippe Suter Verifying pattern matching with guards in Scala

Introduction
Turning patterns into formulas

Implementation

Scala
reasoning about pattern matching
status in Scala
motivation
project overview

Scala1

I Scala is an object-oriented and functional language which is
completely interoperable with Java.

I It removes some of the more arcane constructs of these
environments and adds instead:

1. a uniform object model
2. pattern matching and higher-order functions
3. novel ways to abstract and compose programs

1
The Scala Experiment – Can We Provide Better Language Support for Component Systems?

http://lamp.epfl.ch/~odersky/talks/google06.pdf

Mirco Dotta, Philippe Suter Verifying pattern matching with guards in Scala

http://lamp.epfl.ch/~odersky/talks/google06.pdf

Introduction
Turning patterns into formulas

Implementation

Scala
reasoning about pattern matching
status in Scala
motivation
project overview

Scala1

I Scala is an object-oriented and functional language which is
completely interoperable with Java.

I It removes some of the more arcane constructs of these
environments and adds instead:

1. a uniform object model
2. pattern matching and higher-order functions
3. novel ways to abstract and compose programs

1
The Scala Experiment – Can We Provide Better Language Support for Component Systems?

http://lamp.epfl.ch/~odersky/talks/google06.pdf

Mirco Dotta, Philippe Suter Verifying pattern matching with guards in Scala

http://lamp.epfl.ch/~odersky/talks/google06.pdf

Introduction
Turning patterns into formulas

Implementation

Scala
reasoning about pattern matching
status in Scala
motivation
project overview

Algebraic Data Types in Scala

I Consider the following ADT definition:

type Tree = Node of Tree ∗ int ∗ Tree
| EmptyTree

I In Scala:

abstract class Tree

case class Node (left: Tree, value: Int, right: Tree) extends Tree

case object EmptyTree extends Tree

Mirco Dotta, Philippe Suter Verifying pattern matching with guards in Scala

Introduction
Turning patterns into formulas

Implementation

Scala
reasoning about pattern matching
status in Scala
motivation
project overview

Algebraic Data Types in Scala

I Consider the following ADT definition:

type Tree = Node of Tree ∗ int ∗ Tree
| EmptyTree

I In Scala:

abstract class Tree

case class Node (left: Tree, value: Int, right: Tree) extends Tree

case object EmptyTree extends Tree

Mirco Dotta, Philippe Suter Verifying pattern matching with guards in Scala

Introduction
Turning patterns into formulas

Implementation

Scala
reasoning about pattern matching
status in Scala
motivation
project overview

Algebraic Data Types in Scala

I Consider the following ADT definition:

type Tree = Node of Tree ∗ int ∗ Tree
| EmptyTree

I In Scala:

abstract class Tree

case class Node (left: Tree, value: Int, right: Tree) extends Tree

case object EmptyTree extends Tree

Mirco Dotta, Philippe Suter Verifying pattern matching with guards in Scala

Introduction
Turning patterns into formulas

Implementation

Scala
reasoning about pattern matching
status in Scala
motivation
project overview

Pattern matching in Scala

Consider the following search function on a sorted binary tree:

def search(tree: Tree, value: Int): Boolean = tree match {
case EmptyTree ⇒ false
case Node(,v,) if(v == value) ⇒ true
case Node(l,v,) if(v < value) ⇒ search(l,v)
case Node(,v,r) if(v > value) ⇒ search(r,v)
case ⇒ throw new Exception(”...”)

}

Mirco Dotta, Philippe Suter Verifying pattern matching with guards in Scala

Introduction
Turning patterns into formulas

Implementation

Scala
reasoning about pattern matching
status in Scala
motivation
project overview

Pattern matching in Scala

Consider the following search function on a sorted binary tree:

def search(tree: Tree, value: Int): Boolean = tree match {
case EmptyTree ⇒ false
case Node(,v,) if(v == value) ⇒ true
case Node(l,v,) if(v < value) ⇒ search(l,v)
case Node(,v,r) if(v > value) ⇒ search(r,v)
case ⇒ throw new Exception(”...”)

}

Mirco Dotta, Philippe Suter Verifying pattern matching with guards in Scala

Introduction
Turning patterns into formulas

Implementation

Scala
reasoning about pattern matching
status in Scala
motivation
project overview

Pattern matching in Scala - cont’d

You can:

I match on objects

I use recursive patterns

case Node(Node(,5,), ,) ⇒ output(”5 on its left!”)

I use type restrictions

case Node(left: Node, ,) ⇒ output(”node on its left!”)

I use guards

I use wildcards

Mirco Dotta, Philippe Suter Verifying pattern matching with guards in Scala

Introduction
Turning patterns into formulas

Implementation

Scala
reasoning about pattern matching
status in Scala
motivation
project overview

Pattern matching in Scala - cont’d

You can:

I match on objects

I use recursive patterns

case Node(Node(,5,), ,) ⇒ output(”5 on its left!”)

I use type restrictions

case Node(left: Node, ,) ⇒ output(”node on its left!”)

I use guards

I use wildcards

Mirco Dotta, Philippe Suter Verifying pattern matching with guards in Scala

Introduction
Turning patterns into formulas

Implementation

Scala
reasoning about pattern matching
status in Scala
motivation
project overview

Pattern matching in Scala - cont’d

You can:

I match on objects

I use recursive patterns

case Node(Node(,5,), ,) ⇒ output(”5 on its left!”)

I use type restrictions

case Node(left: Node, ,) ⇒ output(”node on its left!”)

I use guards

I use wildcards

Mirco Dotta, Philippe Suter Verifying pattern matching with guards in Scala

Introduction
Turning patterns into formulas

Implementation

Scala
reasoning about pattern matching
status in Scala
motivation
project overview

Pattern matching in Scala - cont’d

You can:

I match on objects

I use recursive patterns

case Node(Node(,5,), ,) ⇒ output(”5 on its left!”)

I use type restrictions

case Node(left: Node, ,) ⇒ output(”node on its left!”)

I use guards

I use wildcards

Mirco Dotta, Philippe Suter Verifying pattern matching with guards in Scala

Introduction
Turning patterns into formulas

Implementation

Scala
reasoning about pattern matching
status in Scala
motivation
project overview

Pattern matching in Scala - cont’d

You can:

I match on objects

I use recursive patterns

case Node(Node(,5,), ,) ⇒ output(”5 on its left!”)

I use type restrictions

case Node(left: Node, ,) ⇒ output(”node on its left!”)

I use guards

I use wildcards

Mirco Dotta, Philippe Suter Verifying pattern matching with guards in Scala

Introduction
Turning patterns into formulas

Implementation

Scala
reasoning about pattern matching
status in Scala
motivation
project overview

Pattern matching in Scala - cont’d

You can:

I match on objects

I use recursive patterns

case Node(Node(,5,), ,) ⇒ output(”5 on its left!”)

I use type restrictions

case Node(left: Node, ,) ⇒ output(”node on its left!”)

I use guards

I use wildcards

Mirco Dotta, Philippe Suter Verifying pattern matching with guards in Scala

Introduction
Turning patterns into formulas

Implementation

Scala
reasoning about pattern matching
status in Scala
motivation
project overview

In general, two interesting properties:

I completeness

I disjointness

(both ⇒ partitioning)

Enforcement of these properties varies among languages.

Mirco Dotta, Philippe Suter Verifying pattern matching with guards in Scala

Introduction
Turning patterns into formulas

Implementation

Scala
reasoning about pattern matching
status in Scala
motivation
project overview

In general, two interesting properties:

I completeness

I disjointness

(both ⇒ partitioning)

Enforcement of these properties varies among languages.

Mirco Dotta, Philippe Suter Verifying pattern matching with guards in Scala

Introduction
Turning patterns into formulas

Implementation

Scala
reasoning about pattern matching
status in Scala
motivation
project overview

In general, two interesting properties:

I completeness

I disjointness

(both ⇒ partitioning)

Enforcement of these properties varies among languages.

Mirco Dotta, Philippe Suter Verifying pattern matching with guards in Scala

Introduction
Turning patterns into formulas

Implementation

Scala
reasoning about pattern matching
status in Scala
motivation
project overview

In general, two interesting properties:

I completeness

I disjointness

(both ⇒ partitioning)

Enforcement of these properties varies among languages.

Mirco Dotta, Philippe Suter Verifying pattern matching with guards in Scala

Introduction
Turning patterns into formulas

Implementation

Scala
reasoning about pattern matching
status in Scala
motivation
project overview

Status in Scala

In Scala:

I completeness is not required

I MatchException raised if no match is found

I completeness can be checked to some extent

I only for sealed classes
I guards are taken into account very conservatively

I disjointness is neither required nor checkable

I unreachable patterns are forbidden

Mirco Dotta, Philippe Suter Verifying pattern matching with guards in Scala

Introduction
Turning patterns into formulas

Implementation

Scala
reasoning about pattern matching
status in Scala
motivation
project overview

Status in Scala

In Scala:
I completeness is not required

I MatchException raised if no match is found

I completeness can be checked to some extent

I only for sealed classes
I guards are taken into account very conservatively

I disjointness is neither required nor checkable

I unreachable patterns are forbidden

Mirco Dotta, Philippe Suter Verifying pattern matching with guards in Scala

Introduction
Turning patterns into formulas

Implementation

Scala
reasoning about pattern matching
status in Scala
motivation
project overview

Status in Scala

In Scala:
I completeness is not required

I MatchException raised if no match is found

I completeness can be checked to some extent

I only for sealed classes
I guards are taken into account very conservatively

I disjointness is neither required nor checkable

I unreachable patterns are forbidden

Mirco Dotta, Philippe Suter Verifying pattern matching with guards in Scala

Introduction
Turning patterns into formulas

Implementation

Scala
reasoning about pattern matching
status in Scala
motivation
project overview

Status in Scala

In Scala:
I completeness is not required

I MatchException raised if no match is found

I completeness can be checked to some extent

I only for sealed classes
I guards are taken into account very conservatively

I disjointness is neither required nor checkable

I unreachable patterns are forbidden

Mirco Dotta, Philippe Suter Verifying pattern matching with guards in Scala

Introduction
Turning patterns into formulas

Implementation

Scala
reasoning about pattern matching
status in Scala
motivation
project overview

Status in Scala

In Scala:
I completeness is not required

I MatchException raised if no match is found

I completeness can be checked to some extent
I only for sealed classes

I guards are taken into account very conservatively

I disjointness is neither required nor checkable

I unreachable patterns are forbidden

Mirco Dotta, Philippe Suter Verifying pattern matching with guards in Scala

Introduction
Turning patterns into formulas

Implementation

Scala
reasoning about pattern matching
status in Scala
motivation
project overview

Status in Scala

In Scala:
I completeness is not required

I MatchException raised if no match is found

I completeness can be checked to some extent
I only for sealed classes
I guards are taken into account very conservatively

I disjointness is neither required nor checkable

I unreachable patterns are forbidden

Mirco Dotta, Philippe Suter Verifying pattern matching with guards in Scala

Introduction
Turning patterns into formulas

Implementation

Scala
reasoning about pattern matching
status in Scala
motivation
project overview

Status in Scala

In Scala:
I completeness is not required

I MatchException raised if no match is found

I completeness can be checked to some extent
I only for sealed classes
I guards are taken into account very conservatively

I disjointness is neither required nor checkable

I unreachable patterns are forbidden

Mirco Dotta, Philippe Suter Verifying pattern matching with guards in Scala

Introduction
Turning patterns into formulas

Implementation

Scala
reasoning about pattern matching
status in Scala
motivation
project overview

Status in Scala

In Scala:
I completeness is not required

I MatchException raised if no match is found

I completeness can be checked to some extent
I only for sealed classes
I guards are taken into account very conservatively

I disjointness is neither required nor checkable

I unreachable patterns are forbidden

Mirco Dotta, Philippe Suter Verifying pattern matching with guards in Scala

Introduction
Turning patterns into formulas

Implementation

Scala
reasoning about pattern matching
status in Scala
motivation
project overview

Project goals

Current situation:

I little help from compiler

I too conservative
I Scala users keep asking for improved completeness checks

I ensuring disjointness is left to the developers

I apparently, a less sought-after property

There is room for improvements using formal verification
techniques.

Mirco Dotta, Philippe Suter Verifying pattern matching with guards in Scala

Introduction
Turning patterns into formulas

Implementation

Scala
reasoning about pattern matching
status in Scala
motivation
project overview

Project goals

Current situation:
I little help from compiler

I too conservative
I Scala users keep asking for improved completeness checks

I ensuring disjointness is left to the developers

I apparently, a less sought-after property

There is room for improvements using formal verification
techniques.

Mirco Dotta, Philippe Suter Verifying pattern matching with guards in Scala

Introduction
Turning patterns into formulas

Implementation

Scala
reasoning about pattern matching
status in Scala
motivation
project overview

Project goals

Current situation:
I little help from compiler

I too conservative
I Scala users keep asking for improved completeness checks

I ensuring disjointness is left to the developers
I apparently, a less sought-after property

There is room for improvements using formal verification
techniques.

Mirco Dotta, Philippe Suter Verifying pattern matching with guards in Scala

Introduction
Turning patterns into formulas

Implementation

Scala
reasoning about pattern matching
status in Scala
motivation
project overview

Project goals

Current situation:
I little help from compiler

I too conservative
I Scala users keep asking for improved completeness checks

I ensuring disjointness is left to the developers
I apparently, a less sought-after property

There is room for improvements using formal verification
techniques.

Mirco Dotta, Philippe Suter Verifying pattern matching with guards in Scala

Introduction
Turning patterns into formulas

Implementation

Scala
reasoning about pattern matching
status in Scala
motivation
project overview

Extending the Scala compiler

1. Analysis is implemented as an additional phase in the
compiler.

2. Pattern matching subtrees and the related hierarchy are
retrieved from the compiler environment and AST.

3. This information is used to generate an intermediate
representation.

4. From there, formulas are constructed and fed to formDecider.

5. Based on the results, warning/error messages are sent back to
the compiler.

Mirco Dotta, Philippe Suter Verifying pattern matching with guards in Scala

Introduction
Turning patterns into formulas

Implementation

Scala
reasoning about pattern matching
status in Scala
motivation
project overview

Extending the Scala compiler

1. Analysis is implemented as an additional phase in the
compiler.

2. Pattern matching subtrees and the related hierarchy are
retrieved from the compiler environment and AST.

3. This information is used to generate an intermediate
representation.

4. From there, formulas are constructed and fed to formDecider.

5. Based on the results, warning/error messages are sent back to
the compiler.

Mirco Dotta, Philippe Suter Verifying pattern matching with guards in Scala

Introduction
Turning patterns into formulas

Implementation

Scala
reasoning about pattern matching
status in Scala
motivation
project overview

Extending the Scala compiler

1. Analysis is implemented as an additional phase in the
compiler.

2. Pattern matching subtrees and the related hierarchy are
retrieved from the compiler environment and AST.

3. This information is used to generate an intermediate
representation.

4. From there, formulas are constructed and fed to formDecider.

5. Based on the results, warning/error messages are sent back to
the compiler.

Mirco Dotta, Philippe Suter Verifying pattern matching with guards in Scala

Introduction
Turning patterns into formulas

Implementation

Scala
reasoning about pattern matching
status in Scala
motivation
project overview

Extending the Scala compiler

1. Analysis is implemented as an additional phase in the
compiler.

2. Pattern matching subtrees and the related hierarchy are
retrieved from the compiler environment and AST.

3. This information is used to generate an intermediate
representation.

4. From there, formulas are constructed and fed to formDecider.

5. Based on the results, warning/error messages are sent back to
the compiler.

Mirco Dotta, Philippe Suter Verifying pattern matching with guards in Scala

Introduction
Turning patterns into formulas

Implementation

Scala
reasoning about pattern matching
status in Scala
motivation
project overview

The big picture

formDecider

veri�er

AST converter

formula generator

scalac

parser

refchecks

liftcode

genJVM

...

...

.scala

.class

Mirco Dotta, Philippe Suter Verifying pattern matching with guards in Scala

Introduction
Turning patterns into formulas

Implementation

general idea
formalization of concepts
axioms
patterns

From patterns to formulas

I We want to create formulas – in FOPL – to prove
completeness and disjointness.

I The process can be split as follows:

1. define a mapping from pattern expressions to formulas

I how to represent types of classes and objects?
I how to represent constructor parameters?
I how to deal with recursive constructs?
I how to include guards?
I how about primitive types? and strings?

2. define completeness and disjointness

I what axioms do we need?
I how do formulas relate to each other?

Mirco Dotta, Philippe Suter Verifying pattern matching with guards in Scala

Introduction
Turning patterns into formulas

Implementation

general idea
formalization of concepts
axioms
patterns

From patterns to formulas

I We want to create formulas – in FOPL – to prove
completeness and disjointness.

I The process can be split as follows:

1. define a mapping from pattern expressions to formulas

I how to represent types of classes and objects?
I how to represent constructor parameters?
I how to deal with recursive constructs?
I how to include guards?
I how about primitive types? and strings?

2. define completeness and disjointness

I what axioms do we need?
I how do formulas relate to each other?

Mirco Dotta, Philippe Suter Verifying pattern matching with guards in Scala

Introduction
Turning patterns into formulas

Implementation

general idea
formalization of concepts
axioms
patterns

From patterns to formulas

I We want to create formulas – in FOPL – to prove
completeness and disjointness.

I The process can be split as follows:
1. define a mapping from pattern expressions to formulas

I how to represent types of classes and objects?
I how to represent constructor parameters?
I how to deal with recursive constructs?
I how to include guards?
I how about primitive types? and strings?

2. define completeness and disjointness

I what axioms do we need?
I how do formulas relate to each other?

Mirco Dotta, Philippe Suter Verifying pattern matching with guards in Scala

Introduction
Turning patterns into formulas

Implementation

general idea
formalization of concepts
axioms
patterns

From patterns to formulas

I We want to create formulas – in FOPL – to prove
completeness and disjointness.

I The process can be split as follows:
1. define a mapping from pattern expressions to formulas

I how to represent types of classes and objects?
I how to represent constructor parameters?
I how to deal with recursive constructs?
I how to include guards?
I how about primitive types? and strings?

2. define completeness and disjointness

I what axioms do we need?
I how do formulas relate to each other?

Mirco Dotta, Philippe Suter Verifying pattern matching with guards in Scala

Introduction
Turning patterns into formulas

Implementation

general idea
formalization of concepts
axioms
patterns

From patterns to formulas

I We want to create formulas – in FOPL – to prove
completeness and disjointness.

I The process can be split as follows:
1. define a mapping from pattern expressions to formulas

I how to represent types of classes and objects?
I how to represent constructor parameters?
I how to deal with recursive constructs?
I how to include guards?
I how about primitive types? and strings?

2. define completeness and disjointness

I what axioms do we need?
I how do formulas relate to each other?

Mirco Dotta, Philippe Suter Verifying pattern matching with guards in Scala

Introduction
Turning patterns into formulas

Implementation

general idea
formalization of concepts
axioms
patterns

From patterns to formulas

I We want to create formulas – in FOPL – to prove
completeness and disjointness.

I The process can be split as follows:
1. define a mapping from pattern expressions to formulas

I how to represent types of classes and objects?
I how to represent constructor parameters?
I how to deal with recursive constructs?
I how to include guards?
I how about primitive types? and strings?

2. define completeness and disjointness
I what axioms do we need?
I how do formulas relate to each other?

Mirco Dotta, Philippe Suter Verifying pattern matching with guards in Scala

Introduction
Turning patterns into formulas

Implementation

general idea
formalization of concepts
axioms
patterns

Formalizing completeness and disjointness

Consider a pattern-matching expression E :

t match {
case p1 ⇒ . . .
. . .
case pi ⇒ . . .

}

Assume we have a predicate ξ(t, p) such that ∀i , ξ(t, pi) is true iff
the pattern pi matches the expression t.

I E is complete ⇐⇒
∨

i ξ(t, pi)

I E is disjoint ⇐⇒ ∀i , j , i 6= j =⇒ ¬(ξ(t, pi) ∧ ξ(t, pj))

Mirco Dotta, Philippe Suter Verifying pattern matching with guards in Scala

Introduction
Turning patterns into formulas

Implementation

general idea
formalization of concepts
axioms
patterns

Formalizing completeness and disjointness

Consider a pattern-matching expression E :

t match {
case p1 ⇒ . . .
. . .
case pi ⇒ . . .

}

Assume we have a predicate ξ(t, p) such that ∀i , ξ(t, pi) is true iff
the pattern pi matches the expression t.

I E is complete ⇐⇒
∨

i ξ(t, pi)

I E is disjoint ⇐⇒ ∀i , j , i 6= j =⇒ ¬(ξ(t, pi) ∧ ξ(t, pj))

Mirco Dotta, Philippe Suter Verifying pattern matching with guards in Scala

Introduction
Turning patterns into formulas

Implementation

general idea
formalization of concepts
axioms
patterns

Formalizing completeness and disjointness

Consider a pattern-matching expression E :

t match {
case p1 ⇒ . . .
. . .
case pi ⇒ . . .

}

Assume we have a predicate ξ(t, p) such that ∀i , ξ(t, pi) is true iff
the pattern pi matches the expression t.

I E is complete ⇐⇒
∨

i ξ(t, pi)

I E is disjoint ⇐⇒ ∀i , j , i 6= j =⇒ ¬(ξ(t, pi) ∧ ξ(t, pj))

Mirco Dotta, Philippe Suter Verifying pattern matching with guards in Scala

Introduction
Turning patterns into formulas

Implementation

general idea
formalization of concepts
axioms
patterns

Formalizing completeness and disjointness

Consider a pattern-matching expression E :

t match {
case p1 ⇒ . . .
. . .
case pi ⇒ . . .

}

Assume we have a predicate ξ(t, p) such that ∀i , ξ(t, pi) is true iff
the pattern pi matches the expression t.

I E is complete ⇐⇒
∨

i ξ(t, pi)

I E is disjoint ⇐⇒ ∀i , j , i 6= j =⇒ ¬(ξ(t, pi) ∧ ξ(t, pj))

Mirco Dotta, Philippe Suter Verifying pattern matching with guards in Scala

Introduction
Turning patterns into formulas

Implementation

general idea
formalization of concepts
axioms
patterns

Formalizing patterns

Types can naturally be represented as sets

I t: Node 7−→ t ∈ Node

Subtyping can be seen as set inclusion

I case class Node(...) extends Tree 7−→ Node ⊆ Tree

Properties of ADT are used to generate axioms

I ∀t ∈ Tree, t ∈ Node(...)⊕ t ∈ EmptyTree

Mirco Dotta, Philippe Suter Verifying pattern matching with guards in Scala

Introduction
Turning patterns into formulas

Implementation

general idea
formalization of concepts
axioms
patterns

Formalizing patterns

Types can naturally be represented as sets

I t: Node 7−→ t ∈ Node

Subtyping can be seen as set inclusion

I case class Node(...) extends Tree 7−→ Node ⊆ Tree

Properties of ADT are used to generate axioms

I ∀t ∈ Tree, t ∈ Node(...)⊕ t ∈ EmptyTree

Mirco Dotta, Philippe Suter Verifying pattern matching with guards in Scala

Introduction
Turning patterns into formulas

Implementation

general idea
formalization of concepts
axioms
patterns

Formalizing patterns

Types can naturally be represented as sets

I t: Node 7−→ t ∈ Node

Subtyping can be seen as set inclusion

I case class Node(...) extends Tree 7−→ Node ⊆ Tree

Properties of ADT are used to generate axioms

I ∀t ∈ Tree, t ∈ Node(...)⊕ t ∈ EmptyTree

Mirco Dotta, Philippe Suter Verifying pattern matching with guards in Scala

Introduction
Turning patterns into formulas

Implementation

general idea
formalization of concepts
axioms
patterns

Formalizing patterns – cont’d

Objects are represented as singletons

I case object Leaf 7−→ Leaf = {leaf0}

Types of constructor parameters are represented by functions

I case class Node(left: Tree, right: Tree) 7−→
∀n ∈ Node (ΨNode,left(n) ∈ Tree ∧ΨNode,right ∈ Tree)

The above transformations, along with the information about the
selector’s type, define axioms about E .

Mirco Dotta, Philippe Suter Verifying pattern matching with guards in Scala

Introduction
Turning patterns into formulas

Implementation

general idea
formalization of concepts
axioms
patterns

Formalizing patterns – cont’d

Objects are represented as singletons

I case object Leaf 7−→ Leaf = {leaf0}

Types of constructor parameters are represented by functions

I case class Node(left: Tree, right: Tree) 7−→
∀n ∈ Node (ΨNode,left(n) ∈ Tree ∧ΨNode,right ∈ Tree)

The above transformations, along with the information about the
selector’s type, define axioms about E .

Mirco Dotta, Philippe Suter Verifying pattern matching with guards in Scala

Introduction
Turning patterns into formulas

Implementation

general idea
formalization of concepts
axioms
patterns

Formalizing patterns – cont’d

Objects are represented as singletons

I case object Leaf 7−→ Leaf = {leaf0}

Types of constructor parameters are represented by functions

I case class Node(left: Tree, right: Tree) 7−→
∀n ∈ Node (ΨNode,left(n) ∈ Tree ∧ΨNode,right ∈ Tree)

The above transformations, along with the information about the
selector’s type, define axioms about E .

Mirco Dotta, Philippe Suter Verifying pattern matching with guards in Scala

Introduction
Turning patterns into formulas

Implementation

general idea
formalization of concepts
axioms
patterns

Example – Axioms

abstract class Tree
case class Node(left:Tree,right:Tree) extends Tree
case object Leaf extends Tree

t: Tree match { . . . }

t ∈ Tree

∧ Node ⊆ Tree ∧ Leaf ⊆ Tree ∧ Leaf = {leaf0}
∧ ∀t0 ∈ Tree, t0 ∈ Node(...)⊕ t0 ∈ Leaf

∧ ∀n ∈ Node (ΨNode,left(n) ∈ Tree ∧ΨNode,right ∈ Tree)

Mirco Dotta, Philippe Suter Verifying pattern matching with guards in Scala

Introduction
Turning patterns into formulas

Implementation

general idea
formalization of concepts
axioms
patterns

Axioms – cont’d

Recall that the formulas ξ(t, pi) correspond to the patterns pi .

I Each of these formulas is in the form A(t) =⇒ Π(pi), where
A(t) are the axioms previously mentioned, and Π(pi) a
formula depending on pi .

I The formula for completeness
∨

i ξ(t, pi) hence becomes∨
i (A(t) =⇒ Π(pi))

Simplified, this becomes: A(t) =⇒
∨

i Π(pi)

Mirco Dotta, Philippe Suter Verifying pattern matching with guards in Scala

Introduction
Turning patterns into formulas

Implementation

general idea
formalization of concepts
axioms
patterns

Axioms – cont’d

Recall that the formulas ξ(t, pi) correspond to the patterns pi .

I Each of these formulas is in the form A(t) =⇒ Π(pi), where
A(t) are the axioms previously mentioned, and Π(pi) a
formula depending on pi .

I The formula for completeness
∨

i ξ(t, pi) hence becomes∨
i (A(t) =⇒ Π(pi))

Simplified, this becomes: A(t) =⇒
∨

i Π(pi)

Mirco Dotta, Philippe Suter Verifying pattern matching with guards in Scala

Introduction
Turning patterns into formulas

Implementation

general idea
formalization of concepts
axioms
patterns

Axioms – cont’d

Recall that the formulas ξ(t, pi) correspond to the patterns pi .

I Each of these formulas is in the form A(t) =⇒ Π(pi), where
A(t) are the axioms previously mentioned, and Π(pi) a
formula depending on pi .

I The formula for completeness
∨

i ξ(t, pi) hence becomes∨
i (A(t) =⇒ Π(pi))

Simplified, this becomes: A(t) =⇒
∨

i Π(pi)

Mirco Dotta, Philippe Suter Verifying pattern matching with guards in Scala

Introduction
Turning patterns into formulas

Implementation

general idea
formalization of concepts
axioms
patterns

Axioms – cont’d

Recall that the formulas ξ(t, pi) correspond to the patterns pi .

I Each of these formulas is in the form A(t) =⇒ Π(pi), where
A(t) are the axioms previously mentioned, and Π(pi) a
formula depending on pi .

I The formula for completeness
∨

i ξ(t, pi) hence becomes∨
i (A(t) =⇒ Π(pi))

Simplified, this becomes: A(t) =⇒
∨

i Π(pi)

Mirco Dotta, Philippe Suter Verifying pattern matching with guards in Scala

Introduction
Turning patterns into formulas

Implementation

general idea
formalization of concepts
axioms
patterns

Translation of patterns

The “root” type in the pattern is assigned to the selector

I t match { case Node(. . .) ⇒ . . . } 7−→ t ∈ Node

Aliases2 are bound to fresh names

I case Node(left: Node, . . .) ⇒ . . .
7−→ leftfresh = ΨNode,left(t) ∧ leftfresh ∈ Node

Wildcards generate no constraints

I case ⇒ . . . 7−→ true

2
the practical implementation slightly differs when proving completeness

Mirco Dotta, Philippe Suter Verifying pattern matching with guards in Scala

Introduction
Turning patterns into formulas

Implementation

general idea
formalization of concepts
axioms
patterns

Translation of patterns

The “root” type in the pattern is assigned to the selector

I t match { case Node(. . .) ⇒ . . . } 7−→ t ∈ Node

Aliases2 are bound to fresh names

I case Node(left: Node, . . .) ⇒ . . .
7−→ leftfresh = ΨNode,left(t) ∧ leftfresh ∈ Node

Wildcards generate no constraints

I case ⇒ . . . 7−→ true

2
the practical implementation slightly differs when proving completeness

Mirco Dotta, Philippe Suter Verifying pattern matching with guards in Scala

Introduction
Turning patterns into formulas

Implementation

general idea
formalization of concepts
axioms
patterns

Translation of patterns

The “root” type in the pattern is assigned to the selector

I t match { case Node(. . .) ⇒ . . . } 7−→ t ∈ Node

Aliases2 are bound to fresh names

I case Node(left: Node, . . .) ⇒ . . .
7−→ leftfresh = ΨNode,left(t) ∧ leftfresh ∈ Node

Wildcards generate no constraints

I case ⇒ . . . 7−→ true

2
the practical implementation slightly differs when proving completeness

Mirco Dotta, Philippe Suter Verifying pattern matching with guards in Scala

Introduction
Turning patterns into formulas

Implementation

general idea
formalization of concepts
axioms
patterns

Translation of patterns – cont’d

Guards are, to some extent, translated to formulas:

I equality and arithmetic operators are kept “as it”

I equals is always considered side-effect free
I dynamic type tests are converted to set membership

I o.isInstanceOf[Type] 7−→ o ∈ Type

I other method calls are ignored

The result of the transformation is a predicate, whose parameters
are the selector and the aliases defined in the pattern.

It is added as a conjunction to the main formula.

Mirco Dotta, Philippe Suter Verifying pattern matching with guards in Scala

Introduction
Turning patterns into formulas

Implementation

general idea
formalization of concepts
axioms
patterns

Translation of patterns – cont’d

Guards are, to some extent, translated to formulas:

I equality and arithmetic operators are kept “as it”

I equals is always considered side-effect free
I dynamic type tests are converted to set membership

I o.isInstanceOf[Type] 7−→ o ∈ Type

I other method calls are ignored

The result of the transformation is a predicate, whose parameters
are the selector and the aliases defined in the pattern.

It is added as a conjunction to the main formula.

Mirco Dotta, Philippe Suter Verifying pattern matching with guards in Scala

Introduction
Turning patterns into formulas

Implementation

current status
future work

Matching on lists

Scala, as a language making an extensive use of lists, has a
dedicated syntax for them:

z match {
case Nil ⇒ . . .
case x :: xs ⇒ . . .

}

. . . but this is essentially syntactic sugar for the following hierarchy:

sealed abstract class List
case final class ::(List, List) extends List
case object Nil extends List

Mirco Dotta, Philippe Suter Verifying pattern matching with guards in Scala

Introduction
Turning patterns into formulas

Implementation

current status
future work

Future work

Some issues we want to address in the future:

I Actually plug it into scalac :)

I Allow matching on string constants.

I Improve support for primitive types.

I Implement limited support for external variables and functions

I . . . oh, well, you always find something to do

Mirco Dotta, Philippe Suter Verifying pattern matching with guards in Scala

Introduction
Turning patterns into formulas

Implementation

current status
future work

Future work

Some issues we want to address in the future:

I Actually plug it into scalac :)

I Allow matching on string constants.

I Improve support for primitive types.

I Implement limited support for external variables and functions

I . . . oh, well, you always find something to do

Mirco Dotta, Philippe Suter Verifying pattern matching with guards in Scala

Introduction
Turning patterns into formulas

Implementation

current status
future work

Questions ?

Mirco Dotta, Philippe Suter Verifying pattern matching with guards in Scala

Introduction
Turning patterns into formulas

Implementation

current status
future work

One for the road. . .

sealed abstract class Arith
case class Sum(l: Arith, r: Arith) extends Arith
case class Prod(n: Num, f: Arith) extends Arith
case class Num(n: Int) extends Arith

def eval(a: Arith): Int = (a: @verified) match {
case Sum(l, r) => eval(l) + eval(r)
case Prod(Num(n), f) if(n == 0) => 0
case Prod(Num(n), f) if(n != 0) => n ∗ eval(f)
case Num(n) => n

}

Mirco Dotta, Philippe Suter Verifying pattern matching with guards in Scala

Introduction
Turning patterns into formulas

Implementation

current status
future work

a ∈ Arith ∧ Sum ⊆ Arith ∧ Prod ⊆ Arith ∧ Num ⊆ Arith

∧ ∀a0 ∈ Arith, ((a0 ∈ Sum ⊕ a0 ∈ Prod) ∧ (a0 ∈ Sum ⊕ a0 ∈ Num)

∧ (a0 ∈ Prod ⊕ a0 ∈ Num)) ∧ ∀s0 ∈ Sum, (ΨSum,l(s0) ∈ Arith

∧ΨSum,r(s0) ∈ Arith) ∧ ∀p0 ∈ Prod , (ΨProd,n(p0) ∈ Num

∧ΨProd,f(s0) ∈ Arith) ∧ ∀n0 ∈ Num,ΨNum,n(n0) ∈ N
=⇒

((lfresh = ΨSum,l(a) ∧ rfresh = ΨSum,r(a)) =⇒ a ∈ Sum)

∨((ffresh = ΨProd,f(a) ∧ nfresh = ΨNum,n(ΨProd,l(a))) =⇒ a ∈ Prod

∧ΨProd,l(a) ∈ Num ∧ nfresh = 0)

∨((ffresh’ = ΨProd,f(a) ∧ nfresh’ = ΨNum,n(ΨProd,l(a))) =⇒ a ∈ Prod

∧ΨProd,l(a) ∈ Num ∧ nfresh’ 6= 0)

∨(nfresh” = ΨNum,n(a) =⇒ a ∈ Num)

Mirco Dotta, Philippe Suter Verifying pattern matching with guards in Scala

	Introduction
	Scala
	reasoning about pattern matching
	status in Scala
	motivation
	project overview

	Turning patterns into formulas
	general idea
	formalization of concepts
	axioms
	patterns

	Implementation
	current status
	future work

