
1

Verifying Dijkstra’s algorithm in Jahob

Robin Mange, Jonathan Kuhn

Ecole Polytechnique Fédérale de Lausanne

{robin.mange, jonathan.kuhn}@epfl.ch

Abstract. This report presents how to efficiently prove correctness

of JAVA implementations. To this end we used Jahob verification

system which is one of the most evolved verification tool for Java-

like programs nowadays. We chose to analyze Dijkstra’s algorithm

because it is widely used in routing protocols. It is simple, yet

allows us to cope with many types of software errors.

This project was motivated by today’s increasing need of bug-free

programs, the main reason being that software development and

maintenance are expensive tasks.

Keywords: Software verification, Jahob, Dijkstra’s algorithm

1. Introduction

Over the end of last century, new technologies such as computers and

the Internet have become essential in several tasks. Software is at the

core of such technologies, it is present in a broad range of tools: from

fridges interfaces, through Internet browsers, as well airplane

navigation systems. Until recently, software’s correctness wasn’t the

main preoccupation in computer science since it was mostly used for

mundane usage. Now there is an increasing demand of software in

critical domains, such as in medical industry (e.g. with pacemakers), in

space missions or security-related systems. That’s why it has become

necessary to have correct programs that won’t fail at unexpected times.

Heeding this call, computer scientists have been developing verification

tools to prove correctness of software. Jahob is one of those new

developed systems that we will use in this project. It is oriented towards

verifying JAVA-like programs.

2

2. Dijkstra’s algorithm

Dijkstra’s algorithm is a greedy algorithm that solves the shortest path

problem from a given source to all the other nodes of a directed graph.

It is widely used in Internet routing protocols such as OSPF (Open

Shortest Path First). It can be used in every link-state routing protocol:

that is when every node knows the complete topology of the network

(and every time it changes, the whole map is updated at each node).

It takes a weighted directed graph G = V x E
1
 with non-negative edges

and a source s as input and computes the shortest path to every other

node in the graph.

It works as follows: Initialize all distances from s to v as infinity, and

from s to s at zero; stores all the unvisited nodes. Then, as long as each

node hasn’t been reached, takes the shortest distance d[v]: if a direct

neighbor allows a lower cost path than current cost, it is updated.

Here is the pseudo-code of the algorithm:

 1 function Dijkstra(Graph, source):
 2 for each vertex v in Graph:

 3 dist[v] := infinity

 4 previous[v] := undefined

 5 dist[source] := 0

 6 Q := copy(Graph)
 7 while Q is not empty:

 8 u := extract_min(Q)
 9 for each neighbor v of u:

10 alt = dist[u] + length(u, v)
11 if alt < dist[v]

12 dist[v] := alt

13 previous[v] := u

Fig1. Pseudo-code of Dijkstra’s algorithm (Wikipedia)

Note that our implementation follows this one closely, except that we

are dealing with undirected graphs only. Indeed when we add an edge

between two nodes, the weight is assigned for both directions.

1
 V being the set of vertices and E V x V being the set of edges in the graph

3

3. Overview of Jahob

Jahob verification system has been developed at the Massachusetts

Institute of Technology in the framework of Viktor Kuncak PhD thesis

(which happens to be our instructor). The interest was to focus on

techniques for automatically proving formulas that arise in the

verification context. It is developed in Objective Caml which is functional

programming language, and is still under active development. It is aimed

at a subset of Java as implementation language.

Let’s briefly introduce the functioning of Jahob verification process.

In order to prove programs’ correctness, developers have to provide

specifications about its behavior in the form of annotations in high-

order logic (HOL); they are expressed as JAVA comments followed by

“:”. They are then translated into a guarded command language to

generate verification conditions. Jahob reduces the verification problem

to the problem of validity of HOL formulas.

Here is a representation of Jahob’s possibilities and links with several

theorem provers and other verification tools.

Fig 2. Jahob system architecture. see [3]

4

4. Implementation verification

We implemented a version of Dijkstra’s algorithm in JAVA. We are not

really interested in his functioning since it’s not our main preoccupation,

but in brief we created a graphical user interface with a menu giving us

the possibility to create new nodes and edges with corresponding

distances (see the figure on the right); but for the verification part using

Jahob, we were only interested in the core algorithm. Then we simply

extracted the data structures and methods that were directly implied in

the core of the shortest-path computation algorithm.

In the next sections we will discuss the process of annotations we

followed and some of the difficulties we encountered during this

project.

4.1 Specifications

To correctly specify the behavior of a program a certain annotation

scheme has to be followed. This scheme uses the standard concepts of

preconditions, frame conditions, postconditions, invariants and

specification variables.

Preconditions are expressed using a requires clauses, frame conditions

as modifies clauses and postconditions as ensures clauses. Class

invariants denote properties of a class that are available in each

reachable state and are declared as invariant clauses in the beginning of

a class. The specification variables don’t affect the execution of the

program but help the reasoning about the behavior. There exists also

5

ghost variable that changes only on explicit assignments and are

independent of other variable.

For example, here is the global specification of the class Vector,

followed by a method of this class, using the previously defined clauses:

class Vector
{
 private static Integer [] a;
 public /* readonly */ int size;

/*:

 public static ghost specvar init :: bool;
 public static specvar content :: objset;
 vardefs
 "content == {n. EX j. n = a.[j] & 0 <= j & j <

size}";
invariant "init --> a ~= null & 0<a..Array.length & 0 <= 20
& 20<=a..Array.length";
*/

…
}

In those statements, we declare a specification ghost variable init which

will implies formulas defines in the invariant field as soon as it is set to

True. This assignment will be done in an initialize method. Another

specification variable content is defined and correspond to an existing

object of the array a.

Those global specifications are quite small in this case, but can become

very big when dealing with several arrays.

Here is a method using the above global specifications to define its

{pre/frame/post} conditions. This method is simply designed to add an

object to an array if the there is still som place.

public void add(Integer e)
/*:
 requires "init & e~=null"
 modifies content, "Array.arrayState", size
 ensures "((content = old content Un {e}) & (s ize =
 (old size) + 1)) | ((content = old content) & (size = (old

size)))";
*/
{

if ((a == null) || (e == null)) {
 //: noteThat "content = old content";
 //: noteThat "size = old size";
 return ;
 }

6

 if ((size>=0) && (size < a.length)) {
 if (a[size] == null) a[size] = new Integer ();
 a[size] = e;
 size = size + 1;
 //: noteThat "content = old content Un {e}";
 //: noteThat "size = old size + 1";
 }

else {
 //: noteThat "content = old content";

 //: noteThat "size = old size";
 }
 }
}

Here the method requires that the specification variable init is true and

that the object e, here an Integer, given in parameter is not null

(requires). The fact that init must be True at the start of the method

simply say that the object a needs to be initialized.

In the 2
nd

 statement simply declare which objects and variables will be

modified during the execution of the method (modifies).

We then specify the state at which the method should arrive after the

execution of the method (ensures). Here we make sure that either the

content is increased with the new object e, or that the content remains

unchanged.

Inside the method, the “noteThat” statements are used to establish

lemmas about current program state to help Jahob.

Jahob provides also some other features, such as allowing the definition

of loop invariant which is very useful. We used them a lot since we have

many loops in our main algorithm. The syntax is quite similar as what we

saw above; here is an example of such a loop:

Integer tmp = new Integer ();

int i = 0;
while //: inv "0 <= i & i <= nb & (vec1~=null) & (tmp~=nu ll) &

theinvs";
(i < nb) {
 tmp.a = i;
 if (i != start) vec1.add(tmp); //Add all elements except

start to the vector
i = i + 1;

}

We need to define what is happening exactly inside the loop. This is

done with the inv statement, which makes sure that at each iteration

the given formulas are respected. In this example, we express that i

must always be between 0 and nb and that the objects vec1 and tmp

7

must never be null. We will explain theinvs in the next section, but we

can already say that it was necessary to use it each time that methods

were used inside a loop.

The actual prover we used in Jahob was CVC Lite. Here is the actual

command used:

./bin/jahob.opt ../Dijkstra.java –class Dijkstra –sastvc –usedp cvcl

The option -sastvc generate verification conditions from simplified Ast

(abstract syntax tree) and we used to automatically desugar procedure

calls. The usedp option selects which decision procedure to use. On

some occasions we also used –failfast: that makes Jahob stops as soon

as one obligation fails. We sometimes used –isa as theorem prover with

a timeout to be able to check pending logs, which was really useful to

debug some problems we got during the annotation phase.

4.2 Problems encountered

Jahob is a very powerful modular software checker, but unfortunately

supports only a subset of JAVA. In consequence some features of JAVA

are not accepted, like concurrency, exceptions, generics and libraries

importations. The last one was quite a problem for us since we were

using the Vector object and the Integer object of JAVA. To compensate

this we had to simulate those classes with faked objects in replacement.

For example the class Vector discussed in the previous chapter is one of

those objects we had to create.

We also had some problems with function calls inside loops: the class

invariants weren’t taken into account in the loop invariants. To solve

this problem we used a small trick given by the Jahob creator himself;

that is to give theinvs to the loop invariant.

Another thing is that Jahob doesn’t support integer-valued arrays, only

object-valued arrays. They are treated differently in the decision

procedure. To overcome this difficulty, we created the faked Integer

object, which was actually already needed by our implementation; but it

would have been nice if we could have used int-valued arrays at some

places.

8

5. Results

5.1 Verification Succeeded!

After a lot of effort invested (since we started as beginners in Jahob), we

managed to successfully verify our implementation of Dijkstra’s

algorithm under our specification design.

Our program consists of about 200 lines of codes and about 80 lines of

annotations were introduced for Jahob. We first proceeded to write the

implementation in JAVA, and then it took us a month to fully annotate

and verify the program. Until now, Jahob was mainly used to prove data

structures such as linked lists, but since we had to deal with many

runtime error checks, then the time we spent to make our verification

scheme working was quite long. It would have been more benefic and

less time-consuming as a whole to write specifications during the

development whenever it’s possible.

The complete execution time of Jahob to verify our program is about 1

minute (around 40s for the main algorithm); this was after having

rewritten our code in a more modularized way. Before that, it was

taking easily more than 20 minutes. Let’s recall that verifying a program

is exponential in the code size (due to generating verification

conditions). Thus it is important to write the code with as many

structured modules as possible to reduce the explosion of time

effectively.

5.2 Benchmarks

To make sure that our program followed our design specifications

correctly, we intentionally introduced bugs in it such as non initialization

of objects, wrong array bounds, etc. For example if we don’t check

bounds for array usage, then we will have a failure in the verification of

the type: ‘ObjNullCheck’.

In the majority of the tests we tried we observed that the intentional

errors were catch by Jahob. When they were not detected, this was

because of some specification errors or missing. This is quite interesting

to test a program like this, and it could also help to see if no

specifications are missing, and then can help to precise our behavior

design.

9

6. Conclusion

This project allowed us to see that programs (in certain cases) are very

tough beasts to tame. Jahob proved us to be a very efficient software

checker. It can be very important to check the correctness of programs

in several today’s applications. We gained some precious insight about

software verification. This was extremely interesting to deal with such

correctness prover since verification system could become (and

probably will become) more and more used in a near future.

7. Related work

What we would have liked to do would have been to compare the

results between Jahob and ESC/Java, which is another (and older)

compile-time checker. While they don’t support the same features, as

shown on the following table, the annotations are quite similar and

translating those from Jahob to ESC/Java would have been

straightforward.

Fig.3 Comparison of ESC/Java and Jahob. See [3]

10

One particularly important difference is that Jahob’s objective is to

prove soundness while ESC/Java makes more trade-offs on it.

Unfortunately we didn’t manage to install ESC/Java on the EPFL

machines for rights reasons (root rights required).

Jahob in its current state is already very powerful, but could be

improved in some ways (increase JAVA support, e.g. libraries

importation, etc).

11

8. Bibliography

[1] V. Kuncak. Modular Data Structure Verification. PhD Thesis, MIT

CSAIL, USA, February 2007

[2] V. Kuncak, M. Rinard. An Overview of the Jahob Analysis System. MIT

CSAIL, USA, 2006

[3] T. Wies. Formal Methods for Java (Software engineering lecture

notes), Albert-Ludwigs-University Freiburg, May 2007

[4] C. Flanagan, K. Rustan M. Leino, M. Lillibridge

G. Nelson, J. B. Saxe, R. Stata. Extended Static Checking for Java. In

PLDI’02, Berlin, June 2002

[5] C. Bouillaget, V. Kuncak, T. Wies, K. Zee, M. Rinard. Using First-Order

Theorem Provers in the Jahob Data Structure Verification System. 2007

