
BURS Automata Generation

TODD A. PROEBSTING

University of Arizona

A simple and efficient algorlthm for generating bottom-up rewrite system (BURS) tables 1s de-

scribed. A small code-generator generator Implementation produces BURS tables efficiently, even

for complex instruction set descriptions The algorlthm does not reqrure novel data structures or

cornphcated algorithmic techniques Previously publmhed methods for on-the-fly ellmmatlon of

states are generahzed and simphfied to create a new method, tmangle trzmmzng, that is employed

m the algorlthm A prototype Implementation, burg, generates BURS tables very efficiently

Categories and Subject Descriptors D,3.4 [Programming Languages] Processors—code gen-

eration; compders; translator wrztr.ng systems and compder generators

General Terms Algorithms, Languages

Additional Key Words and Phrases Code generation, code-generator generator, dynamic pro-

gramming, tree pattern matchmg

1. INTRODUCTION

Possibly the simplest way to visualize and understand the complex instructions and

addressing modes of a processor is to view them as expression trees in which leaves

represent registers, memory locations, or constant values, and internal nodes rep-

resent operations on operand values. Describing even the most complex addressing

mode is simplified when such trees are used. Figure 1 gives an example of tree

patterns.

Because of their expressive power, trees also serve as a natural intermediate

representation (IR) to be generated by the front end of a compiler. If the same

domain of trees is used to describe machine instructions as is used for the IR,

instruction selection for a given IR tree becomes a matter of matching instruction

patterns against the generated IR such that the IR is covered (parsed) with adjacent

patterns. Figure 2 shows two legal covers of the same expression tree. Many

techniques are known for finding such coverings efficiently (in time proportional to

the size of the IR tree). Equally important, finding a least-cost covering (based on

costs associated with the patterns) is also efficient.

Tree pattern matching combined with dynamic programming can be used in code

generators to create locally optimal code for expression trees [Aho et al. 1989]. Code

generators based on bottom-up rewrite system (BURS) theory can be extremely

fast because all dynamic programming is done when the BURS automaton is built.

This work was supported by NSF Grant CCR-9122267

A preliminary version of th]s paper was presented at the 1992 SIGPLAN Conference on Program-

mmg Language Design and Implementation.

Author’s address: Department of Computer Science, University of Arizona, Tucson, AZ 85721.

Permission to make digital\hard copy of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or commercial

advantage, the copyright notice, the title of the publication, and its date appear, and notice is

given that copying is by permission of ACM, Inc. To copy otherwise, to republish, to post on

servers, or to redistribute to lists, requires prior specific permission and/or a fee.

@ 1995 ACM 0164-0925/95/0500-0461 $03.50
ACM Transactions on Pmgranmung Languages and Systems, Vol 17, NO 3, May 1995, Pages 461–486

462 . Todd A. Proebsting

Pattern #

1

2

3

4

5

6

7

8

Label ~ Pattern

goal ~ reg

reg ~ Reg

rez ~ Int

Fetch

i

reg + addr

Plus

/\
reg + reg reg

addr -- reg

addr -+ Int

Plus

/\
addr + reg Int J(0)

Flg 1 Sample machme mstructlon templates

Flg 2 Sample coverings of Identical trees

At compile-time, it is only necessary to make two traversals of the subject tree: one

bottom-up traversal to label each node with a state that encodes all optimal matches

and a second top-down traversal that uses these states to select and emit code.

Fraser and Henry [1991] report that careful encodings can produce an automaton

that executes fewer than 50 VAX instructions (w 90 RISC instructions) per node

to do both traversals.

The automaton that labels the tree is a simple state-transition machine. A

ACM Transactions on Programmmg Languages and Systems, Vol. 17, No. 3, May 1995

Rule#

1

2

3

4

5

6

7

8

8a

BURS Automata Generation . 463

Table I. SlmD1e Grammar and Its Normal Form

Simple Grammar
LHS RHS cost

goal + reg (o)
reg + Reg (o)
reg + Int (1)

reg + Fet ch(addr) (2)

reg -+ Plus(reg, reg) (2)

addr + reg (o)
addr + Int (o)

addr + Plus(reg, Int) (o)

Normal Form

LHS RHS cost

goal + reg (o)

reg + Reg (o)

reg + Int (1)

reg + Fet ch(addr) (2)

reg + Plus(reg, reg) (2)

addr + reg (o)
addr + Int (o)

addr + Plus(reg, n. 1) (o)

n.1 + Int (o)

bottom-up walk of the tree is performed, and the label for any given node is deter-

mined by a table lookup given the operator at the node and the states that label

each of its children. The automaton that emits code is equally simple in design.

The code to be emitted is determined by the state that labels a node and by the

nonterminal to which that node should be reduced—another table lookup.

Two difficulties arise in creating a BURS-style code generator: efficiently gener-

ating the states and state transition tables (because all potential dynamic program-

ming decisions are done at table generation time, they must be done efficiently) and

creating an efficient encoding of the automata for use in a compiler. A solution to

the encoding problem is described by Fraser and Henry [1991].

This article describes a new simple and efficient table generation algorithm. The

code-generator generator described in this article, burg, is based on tree pattern-

matching technology and dynamic programming. Simplicity has increased, not

decreased, efficiency. Efficiency has been enhanced, and tables sizes have been

kept small, by the development of two new techniques, chum rule trtmmtng and

triangle trimming, for eliminating many redundant states. Triangle trimming is

an uncomplicated optimization that, for complex grammars, can reduce both the

table generation time and table sizes by over 30’ZO. Additional optimizations take

advantage of special properties of BURS states.

2. BURS MODEL

The input to a BURS code-generator generator is a set of rules. Each rule indicates

a tree pattern, a cost, a replacement symbol, and an action. The set of all the rules

is called the grammar. Table I gives a small sample grammar (without actions).

The replacement symbol is a nontermmal on the left of the rule—the linearized

tree pattern it derives is on the right. In the sample, goal, reg, and addr are

nonterminals. In addition to nonterminals, the grammar has operators of varying

arities. In the sample, Reg, Int, Fetch, and Plus are operators with respective

arities of O, 0, 1, and 2.

A least-cost parse can be found using dynamic programming. By trying all

matching patterns at all nodes, it is possible to remember the rules that lead to

the cheapest derivation from each possible nonterminal. Figure 3 applies the rules

in Table I to the tree representing Fet ch(Fet ch(Plus(Reg, Int))). Each node is

labeled with the least-cost derivation from each nonterminal.

A BURS pattern matcher finds a least-cost parse of a subject tree for the grammar

that reduces to the goal nonterminal. Each tree node will be labeled with a state

ACM Transactions on Programming Languagee and Syetems, Vol 17, No. 3, May 1995.

464 . Todd A. Proebsting

(goal -> reg #1, 4;
Fetch reg –> Fetch(addr) #4, 4;

t

addr –> reg #6, 4)

(goal -> reg #1, 2;
req –> Fetch(addr) #4, 2; Fetch

addr –> reg #6, 2)

t
(goal -> reg #1, 2;

Plus
reg –> Plus(reg, reg) #5, 3;

/ xddr-’p’us(reg’ n”1)’8 ’0)
Reg Int

(goal –> reg #1, O; (goal -> reg #lr 1;

reg -> Reg #2, O; reg -> Int #3, 1;

addr –> reg #6, O) addr –> Int #7, O;
n.1 –> Int #8a, O)

Flg 3 Dynamic programming applled toexample tree, each node labeled with “(Rule, Cost)”

that encodes which rule isto be used when that node is to be reduced to a given

nonterminal. These states encode the inforrnationgiven explicitly in Figure 3. For

example, it is possible to derive the leaf node, Int, from all the nonterminals.

Int can be directly derived from thenonterminals reg, addr, andn.1, by directly

applying the rules #3, #7, and #8a, respectively. The costs associated with each

derivation is the cost of that particular rule. Thederivation from goal utilizes the

rule, “goal +reg,” that will require that Int be subsequently derived from reg.

Therefore, while the cost associated with rule #1 is O, the cost of the derivation is

1 —thesum of the costs of complete derivation ofInt from goal.

2.1 BURS Automata

ABURSpattern matcher operates intwopasses over the subject tree: the first pass

labels the tree nodes with states during a bottom-up tree walk, and the second pass

reduces the tree to the goal nonterminal top-down. IMutcho controls this process

in Figure 4.

Ina BURSpattern matcher, both passes arecompletely table driven. The labeler,

Labelo in Figure 4, utilizes Transwhon, a state transition table created by the BURS

automata generator. Transttton is indexed by the node’s operator and the states

of all its children.

Trees are subsequently reduced top-down to a goal nonterminal. Encoded into

each state is the rule to apply for each possible nonterminal. (Table Rule Table de-

codes this relationship.) After determining the rule to apply at a given node from

the state/nonterminal combination, subsequent reductions are applied recursively

down the tree. The shape of the applied rule governs where these recursive appli-

cations take place and to which nonterminal those subtrees should be reduced. In

Figure 4, Reduce gives the simplest possible BURS reducer.

Normally, the reducer would fire some action(s) associated with Rule. In a top-

down reduction, these actions would precede the loop over descendent children; in

a bottom-up reduction, actions follow the loop. The construction of the reducer is

irrelevant to the generation of BURS automata.

Fraser et al. [1992b] gives the details of burg’s concrete rules and syntax.

ACM Transactions on Programmmg Languages and Systems, Vol 17, No. 3, May 1995

BURS Automata Generation . 465

procedure Match(Root)

Label(Root)

Reduce (Root, GoalNonterrnznal)

end procedure

procedure Label(Node)

V z & l.. Node. Arzty do

Label (Node. Chzld[i])

end Y

Node .state= Transztxon(Node .op, Node. C’hdd[l], Node. Chdd[Node.Ardy])

end procedure

procedure Reduce (Node, Goal)

Rule = Rule Table (Node .state, Goal)

V i E the number of nonterminals on RHS of Rule do

n = Zth nonterminal of Rule

p = node reached from Node corresponding to ith nonterminal of Rule

Reduce(p, n)

end ‘d

end procedure

FIg 4 Skeletal BURS pattern matcher

Table II Normal-Form Expansion of “reg ~ Fetch(Plus(Reg, Reg)~

Orlgmal Grammar Normal-Form

LHS RHS cost LHS RHS cost

reg A Fetch(Plus(Reg,Reg)) (2) reg —> Fetch(n. 1) (2)

n.i + Plus(n.2, n.2) (o)

n.2 -+ Reg (o)

2.2 Normal-Form Patterns

To simplify the generation of BURS tables, all patterns are put into the normal

jorma introduced in Balachandran et al. [1990]. This form requires that all patterns

be of the form “n + m“ where both n and m are nonterminals, or of the form

“no + op(nl, nhy’ where n, are all nonterminals, k > 0, and op is an operator.

This normal form does not reduce the expressiveness of the grammars—any set of

rules not in normal form can be put into normal form by introducing new non-

terminals that replace embedded tree patterns. The nested patterns become new

nonterminals, and new rules are added that define the new nonterminals in terms

of the nested patterns. The rewrite of the original rule maintains the same cost;

new rules defining the new nonterminals have a cost of O. For instance, Table II

gives a simple normal-form expansion of ‘keg + Fet ch(Plus(Reg,Reg))”:

ACM Transactions on Programming Languages and Systems, Vol. 17, No. 3, May 1995.

466 . Todd A. Proebsting

Flg 5 BURS automata generation

procedure l-famo

States = 0

WorkLast = O

ComputeLeafS’tateso

while WorkLast # (?Jdo

state = Pop(Wor_kLtst)

V op G Operators do

Compute Transuhons(op, state)

end V

end while

end procedure

3. ALGORITHM TO GENERATE BURS TABLES

The new method of computing the states and state transition tables is an uncom-

plicated work-list algorithm. Lfamo outlines this algorithm in Figure 5. Initially,

the states corresponding to each leaf operator (arity = O) are computed and are

added to the set of known states, States, and to the list of states to be processed,

WorkLtst. One by one, states are removed from WorkLwt and processed. For each

operator with arity greater than O, the state must be examined to determine what

transitions are induced by that state when combined with each of the already pro-

cessed states. These transitions may create new states to be added to the WorkLwt.

Figure 5 gives the pseudocode.

3,1 Data Structures Used to Generate BURS Tables

The set of known states, States, is a table that maintains a one-to-one mapping

from individual states to nonnegative integers. These integers are used as indices

into state transition tables via index maps.

States in a BURS code generator encode three pieces of information at any node

in a subject tree: the nonterminals derived from patterns that match a rule at

that node, the relative costs of those nonterminals, and which rules generated each

nonterminal (at a minimal cost). Such triples are called items, and a collection of

items describing a particular state is called an item set. Item sets are implemented

as arrays of { rule, cost } pairs that are indexed by a nonterminal. Item sets are,

therefore, states. A cost of infinity (co) indicates that, in this state, no rule derives

the given nonterminal. The empty state (0) has all costs equal to infinity.

The relative costs are called delta costs and are always normalized so that the

nonterminal with the lowest cost derivation has a delta cost of O. Figure 6 gives

the results of dynamic programming on the tree in Figure 3 after the grammar has

been put into normal form and the relative costs normalized. Note that the states

for the two different Fetch nodes are identical—normalization of costs caused this

to happen.

IVii bout cost normalization there would be infinitely many states for this gram-

mar. This can be easily seen by imagining a chain of N Fetch nodes rooting the

tree in Figure 3. The costs representing the state the root node of the tree with N

Fetch nodes would be {IV + 2, N + 2, IV + 2}. Since dynamic programming must

ACM Transactions on Programming Languages and Systems, Vol. 17. No. 3, May 1995

BURS Automata Generation . 467

(goal -> reg #1, o;

Fetch reg –> Fetch(addr) #4, O;
addr -> reg #6, O)

(goal -> reg #1, o; t

reg -> Fetch(addr) #4, O; Fetch
addr -> reg #6, O)

t
(goal

Plus
reg

i <“r
Reg Int

-> reg #1, 2;
-> Plus(reg, reg) #5, 3;
-> Plus(reg, n.1) #8, O)

(goal -> reg #1, O; (goal -> reg #1, 1;
reg –> Reg #2r O; reg -> Int #3, 1;

addr –> reg #6, O) addr –> Int #7, O;
n.1 -> Int #8a, O)

Flg 6 Dynamic programming with delta costs, each node labeled with “(Rule, Delta Cost) “

procedure NormalweCosts(state)

delta = minv, {state[i]. COW!}

VnE Nontermznalsdo

state [n]. cost = state[n]. cost – delta

end Y

end procedure

Flg 7. Cost normahzation

compute all the states for all possible trees, this sequence

an infinite set of states.

Costs within an item set are normalized by the routine

in Figure 7.

3,2 Chain Rules

of trees would generate

NormalizeCostso given

Item sets are computed in a two-step process. Compute Transzttonso applies rules

of the form “n ~ op(.)“ to generate nonterminals in the initial item set. Next,

the algorithm computes the closure of this set by applying chain rules. Chain rules

are rules of the form “n + m“ where both n and m are nonterminals. These rules

may introduce new nonterminals into an item set, or they may introduce cheaper

ways of deriving nonterminals already in the set. Finding the closure of the set is

done by iteratively trying all the chain rules and repeatedly applying those that

add new or cheaper nonterminals, until no changes are made. Closureo, given

in Figure 8, implements this procedure. Because all costs are nonnegative, and

because a change is made only if a strictly less expensive derivation is found, this

process must terminate.

One nonterminal may be derived from another by zeroor more chain rule appli-

cations. The least-cost derivation 1s denoted “n ~ m.” A shortest-path algorithm

can efficiently compute the cost of such least-cost derivations, “Cost(n3 m).”

ACM Transactions on Programming Languages and Systems, Vol. 17, No. 3, May 1995.

468 . Todd A. Proebsting

procedure Closure(state)

repeat

V r : n + m such that m E Nontermmals do

cost = r.cost + state [m]. cost

if cost < state [n]. cost then

state [n] = { r, cost }

end if’

end V

until no changes to state

end procedure

Flg 8 Closmgastatewlth chain rules

procedure ComputeLeafStateso

V leaf e Leaves do

state=@ //state[n]. cost =cm, Yn~Nontermmals

Vr:n+leajdo

if r.cost < state [n]. cost then

state [n] = { r, r.cost }

end if

end V

NormalzzeCosts(state)

Closure (state)

WorkL~st = Append (WorkLzst, state)

States = States U {state}

leaf. state = state

end V

end procedure

Flg 9 ComputeLeafState. ()

3.3 Computing States and Transitions

The computation of the states and the state transition tables begins by generating

a state for each leaf operator (with arity of O) in the routine ComputeLeafStates ().

These leaf states must be combined as children of each nonleaf operator, and new

states will be created. Each new state is added to the WorkLtst and will be subse-

quently processed to determine what transitions it induces.

Computing the state to label each leaf is straightforward. Rules with a right-

hand side of the given leaf operator generate nonterminals directly into the item

set. Normalizing the costs and finding the closure of the item set completes the

computation of the state corresponding to the leaf operator. Figure 9 illustrates

ComputeLeafStates ().

ACM Transactions on Programming Languages and Systems, Vol. 17, No 3, May 1995

BURS Automata Generation . 469

(9 r4i-1

w Flg 10 Computing transitions

for 0(1, r) using index maps

m

1
state

; transition

[1] table

For each dimension of a nonleaf operator, 1 an index map of represented states is

maintained. Represented states are constructed from an item set by retaining only

those nonterminals that may contribute to a match in the given dimension for the

given operator [Balachandran et al. 1990; Chase 1987]. Suppose that, for a given

grammar, there is no rule with a tree pattern for the binary operator, 0, that has a

left child of nonterminal n. In this case, the algorithm projects n out of any state

when that state is to be examined as a possible left child (in the 1st dimension) of 6.

Thus, represented states model the behavior of an equivalence class of states in the

restricted context of being the nth child of /3. Chase noted that these equivalence

classes produce a much smaller automaton and yield a much faster state generation

algorithm.

%ojecto will retain only those nonterminals in a given state that may be used

in determining the transitions that may be induced by that state as a given child

of a particular operator. A represented state also discards the rule field of each

item because that information does not affect transitions (only reductions). After

useless nonterminals and all rules are discarded, costs are renormalized. For each

dimension, d, a table of represented states, op. reps [d], is maintained that encodes

a one-to-one mapping between those states and nonnegative integers. Each dimen-

sion’s op. map [d] table maintains a mapping from global states to represented states

(op. map[d] [s] is the represented state to which s maps in the dth dimension of op).

Figure 10 illustrates the relationship between index maps and transition tables.

Given the states 1and r for the children of binary operator O, an indirection is used

to look up the state transition for the 6 node. Figure 11 describes the computation

of the relevant nonterminals.

Transition tables are computed based on represented states, not on the original

states. This reduces transition table size because many states may map to the

same represented state. At tree-matching time the cost of using this technique

is the extra level of indirection necessary to compute transitions. In Figure 12,

Compute Transttionso finds all the transitions that each new state induces when

used in combination with other known states for a given operator.

Each represented state is checked to see if it has already been processed. If the

represented state has been previously processed, then no additional work must be

lEach operator of arlty n has a transition table of n dimensions.

ACM Transactions on Programming Languages and Systems, Vol. 17, No. 3, May 1995.

470 . Todd A. Proebsting

function Pro~ect(op,2i state)

pState= @

V n ~ Nontermxnals do

if 3r : me op(nl,nl. l, n, n,+l, ..., nap arztu) then
// Nonterminal n may be used m the zth dimension of op.

pState[n]. cost = state [n]. cost

end if

end V

NormalzzeCosts(pState)

return pState

end procedure

Flg 11 Project ()

procedure C’0mpute7kansztzons (op, state)

Vz ~ 1. op arzty do

pState = ProJect(op, t, state)

op. map[t] [state] = pState

if pState @ op reps [t] then

op reps[z] = op reps[z] U {pState}

V(sl, , s,–1, pstate, st+I, Sop Ay) such that ~~ # Z, Sj E w.~ws[~ldo
— Enumerate all possible combinations of represented states, Sk

result = 0

v r n + op(rn~, ,moP a,,tU) do

— Enumerate all possible rules for op. mk are nonterminals.

cost = r cost + pState[m,]. cost + ~ ~#, ‘J [mJ] cost

if cost < result [n]. cost then

result [n] = { r, cost }

end if

end V

I%n(resutt)

NormalzzeCosts(result)

if result @ States then

Closure(result)

WorkLzst = Append (WorkLzst, result)

States = States U {result}

end if

op. transztlon[sl, s,–1, pstatej 5Z+1, , SOP ~~ztg] = result

end V

end if

end V

end procedure

Flg 12 Compute Ranszt20nso

ACM Transactions on Programmmg Languages and Systems, Vol. 17, No. 3, May 1995.

BURS Automata Generation . 471

Table III

I LHS RHS cost 1

m
done. If the represented state is new, the transition table must be extended along

the given dimension for all possible combinations of the represented states of other

dimensions (along with this represented state). This is done by generating all such

combinations and then searching for all applicable rules. Once these rules have been

applied, the delta costs are normalized, and the item set is closed. If the generated

state is new, then it is added to States and WorkList.

The postponement of Closure () until after the check for the state’s existence in

States is an optimization justified in Section 5.3. Trzmo, the routine responsible

for reducing the number of states produced, is discussed in Section 3.4.

3.3.1 Example State C’omputat~on. State computation for the normal-form gram-

mar in Table III illustrates the preceding ideas.2

State enumeration begins by computing the states corresponding to the leaf op-

erators in the grammar, Reg and Int, in routine ComputeLeaj”Stateso. The states

are item sets of { rule, cost } pairs indexed by nonterminals — the nonterminals

on the left-hand side of the corresponding rule. For each leaf operator, all rules

with that operator on the right are matched, and dynamic programming keeps the

least-cost rules for each left-hand nonterminal. After this step, the state for Int is

{

int ~ Int, cost = (1)

reg -+ -— , cost = }(m) ‘

and the state for Reg is

{

int~—,

reg ~ Reg,

Subsequently, the

to Int’s state gives

{

int + Int,

reg -+ int,

cost = (co)

cost = }(1) ‘

states must be closed with chain rules. Applying reg ~ int

cost = (1)

cost = 1(2) “

Closure does not change Reg’s state.

After closure, a state’s cost is normalized so that the lowest-cost nonterminal is

zero. After normalization, Int’s state becomes

{

int 4 Int, cost = (o)
reg + int, cost = 1(1) ‘

‘The costs are slightly contrived to illustrate cost normalization.

ACM Transactions on Programming Languages and Systems, Vol 17, No. 3, May 1995.

472 . Todd A. Proebsting

and Reg’s state becomes

{

int+—, cost = (cm)

reg ~ Reg, cost = }(o)

These are the first two states in the BURS state transition automaton. Call the

states for Int and Reg, #1 and #2, respectively.

Computing the states for nonleaf operators is more complicated. For each child

of each operator, the algorithm maintains a mapping from states to represented

states. This mapping discards unnecessary information with respect to dynamic

programming and pattern matching. Representer states discard nonterminals that

are not usable for that child, and they discard rule information. After this, costs

are renormalized. Plus is this example’s only nonleaf operator. Since Plus’s first

child must be a reg, the represented states for Plus’s first child can discard any

entry for the int nonterminal. The represented state corresponding to both states

#1 and #2 for Plus’s first child is

{

int -+ —, cost = (cm)

reg ~ —, cost = (o) }

Call this represented state Plus. 1.A (i.e., Plus’s first child’s first representer state).

Because both int and reg can be used as a second child of Plus, neither can be

discarded when computing those representer states. For state #1, the represented

state for Plus’s second child is

{

int + —–, cost = (o)

reg –+ —, cost = 1(1)‘
and the represented for state #2 is

{

int + –-, cost = (cm)

reg + —, 1cost = (o) “

Call these representer states Plus.2.A and PIus.2.B, respectively.

Combining Plus’s representer states produces transitions, and possibly new states.

First, all rules with Plus on the right side are examined, and dynamic program-

ming picks the the cheapest match for each nonterminal. Combining Plus. 1.A and

Plus. 2.A gives the following state.

{

lnt ~ — cost = [;)

reg + Plus(reg, int)~ cost = }

Note that the rule reg - Plus(reg,reg) also matched, but at a greater cost of 3,

so dynamic programming picked the cheaper alternative. Closure does not change

that state. Cost normalization yields

{

int ~ — cost = [;)

reg ~ Plus(reg,int)~ cost =
}

ACM Transactions on Programming Languages and Systems, Vol. 17, No, 3, May 1995.

BURS Automata Generation . 473

Right Child State

~lu~ #1 #2 #3 #4

Left
Child
State I!$?!f

!,,

#1

#2
#3 : #4 Transition Table

#3 -

Flg 13. T1-ansitlons for Plus node

#4 yJ

This is new state #3.

After closure and cost normalization, combining Plus. 1.A and PI.us.2.B gives

state #4,

{

int -+ — cost => (m)

reg -+ Plus(reg,reg), cost = (0) }

Because states #3 and #4 are new, they must be fed back into transition com-

putations. Again, they must be mapped to representer states for Plus. Because

both map to PIus.1.A as Plus’s first child, and both map to Plus.2.B as Plus’s

second child, no more work must actually be done — transitions are computed on

representer states, and #3 and #4 produce no new representer states.

Thus, this grammar has a transition automaton with four states. All Reg nodes

are labeled with state #1, and all Int nodes are labeled with #2. The transitions

for Plus nodes are illustrated in Figure 13.

3.4 State Trimming

Many of the states created by the ComputeTr-ansitaonso are nearly identical. The

state generation algorithm will run faster if it can increase the likelihood that two

created states will be identical. Two states can often be made identical by trimming

unessential nonterminals from the item set. A nonterminal is unessential (in a

particular state) if it can be proven that it will never be needed to produce a least-

cost cover of any subject tree. Henry [1989] devised two ad hoc techniques, “sibling”

and “demand” trimming. to identify when one “{ rule, cost }“ item (representing

a nonterminal) can be safely removed from a state because another item subsumes

it.

3.4.1 Trtangle Trimming. Triangle trimming is a new method for safely remov-

ing unessential nonterminals from an item set, that generalizes Henry’s trimming

techniques. Triangle trimming considers all pairs of nonterminals in a particular

item set and determines if, given their respective costs, one of the nonterminals can

be removed. A nonterminal can be removed if, in all dimensions of all rules where

it is applicable, the other nonterminal can be used in a different rule to generate

the same resulting nonterminal at no greater cost. Informally, a nonterminal, i, can

be removed from an item set if it can be shown that everywhere z can lead to a pat-

tern match, another nonterminal, j, in the item set can also lead to a comparable

pattern match at no greater cost.

ACM Transactions on Programming Languages and Systems, Vol. 17, No. 3, May 1995.

474 . Todd A. Proebsting

J
Ruler W- + @(p,,l, , pT, d>

T“ 1*J* “!’’”’!!”)
Rule t nt - 0(pt,l, > Pt,d> , Pt, aTttg)

Flg 14 Ti-langle-trlmmlng relatlonshlp(forj tosubsumez)

state [z] cost + r cost + Cost(pT, ~ 3 2) >

state [j] cost + t cost + Cost(pt, d 3.j) + Cost(n?. S’ W)

+ ~k#dcOst@t,k ‘Pr,k)

Flg 15 Inequahty that must hold forz to beremovedif~ Is present

Determining if J subsumes z requires comparisons that have a triangular shape

(see Figure 14). For a given operator, 6, and in a given dimension, d, two rules

must be found such that both rules represent patterns for O; and one rule, r, can

employ z as its dth child, and the other rule, t, can employ j as its dth child. (It

is not necessary that these rules use z and ~ directly—they may use nonterminals

that are derived from z and j via chain rules.)

Since rule r reduces to nonterminal nr, it must be shown that t can also produce

nr at no greater cost. By assuming that rule r has matched, it can be determined

if rule t can also match. Rule t can also match if its children in dimensions other

than d can be derived via chain rules from the corresponding children of rule r.

(Since the initial assumption is only that r matches, determining if pt,~ exists for a

match of rule t depends on whether p., k derives pt)k via chain rules.)

Figure 14 shows how i and J, and the rules r and t,must relate for j to subsume

i. Once rule r is found to use 1 to derive n., a rule must be found that can employ

~ and derive n.. Notice that for any rule r that employs t, it is only necessary to

find one such rule t employing j for J to subsume i.

Subsumption is based not only on feasibility, but also on costs. A nonterminal

cannot be removed if its removal would force more-expensive reductions to be found

than had it been retained. For the pair of rules, r and t, in Figure 14, it is possible

to remove t from the item set containing J if the inequality in Figure 15 holds.

The cost of using r is the sum of the cost of i, the cost of deriving p,,~ from z,

and the cost of r. Since the premise is only that rule r matches and that z and

~ are present in some item set, the computation of the cost of using t with ~ to

produce n, indirectly will require not only the costs of t, j, and p~,d ~ ‘j, but will

also require the costs of deriving the other Pt,k from pr,k and the cost of deriving

nr from nt.

The inequality in Figure 15 is the basis for finding the mzmmal cost difference

between two nonterminals to allow one of them to be removed for a given rule. In

general, to remove i safely, it is necessary to examine all contexts in which z can

ACM Transactions on Programming Languages and Systems, Vol. 17, No. 3, May 1995.

BURS Automata Generation . 475

// Compute C, such that if state[i]. cost > state [j] cost+ C

// then z can safely be removed from state.

function Thungle(i, j)

if ~ = Goal then

return cc // Do not remove the goal nonterminal.
end if
Max = –m
V n ~ Nonteminals– {i} do

if Maz < Cost(n ~ j) – Cost(n ~ i) then

Max = Cost(n 3 j) – Cost(n 4 i)

end if

end V

V op E Operators do

V d E I.. op. anty do

v r : n~ -+ OP(P?,I,. . ,PT,OP artty) do

CZ = cost(p~,d % i)

if C% < m then

LocalMm = cc

V t : nt ~ op(pt,l,. . ,pt, Op ~~,ty) do

CT,t = Cost(n, S nt)

Cj = Cost(pt,d ~ j)

Ck = ~k+d Co.$’t(pt,k ~ pr,k)

c = CT3t ● cl h Ck ~ t.COSt – 7_.COSt – c,

if C < LocalMzn then

LocalMm = C

end if

end V

if LocalMzn > Max then

Max = Localitfzn

end if

end if

end V

end V

end V

return Max

end procedure

Fig. 16 Trmngleo

be used and find the cost difference that is sufficient to guarantee that i can be

removed based on the relative costs of i and j. In Figure 16, Triangle (), calculates

this minimal difference for any pair of nonterminals. (When it is impossible for

nonterminal j to be used in place of i, regardless of their respective costs, Tr-iangleo

returns m.)

3.4.2 Trtangle- Trammzng Example. The simple grammar in Table IV illustrates

triangle trimming. The example will demonstrate the necessary relative costs of

nonterminals X and Z to remove X from a state.

ACM Transactions on Programming Languages and Systems, Vol. 17, No. 3, May 1995.

476 . Todd A. Proebsting

Table IV

n

LHS RHS cost

A - e(x, Q) (4)

A4B (1)

B+ O(Y, R) (1)

Y-z (1)

R -Q (1)

Table V. Two Denvatlons for Triangle Tkimmmg

Derivation Total Cost Rewrltmg Step

A=+ 61(x, Q) 4+ Cost(X) +Cost(Q) Apply A ~ 6’(X, Q) directly

A=+B I+ Cost(B) Apply A ~ B dmectly

=+ 6(Y, R) 2+cost(Y)+cost(R) Apply B ~ 6(Y, R)

* O(Z, R) 3+ Cost(Z) +Cost(R) Apply Y d Z

=+ O(Z, Q) 4+ Cost(Z) +Cost(Q) Apply R + Q

procedure Trzm(state)

‘d n c state do

V m s state (m# n) do

C = Cost(n 4 m)

if state [n] cost z state [m]. cost + C then

state [n] = { 1, cc } // Remove n from state.

end if

end V

end ‘d

V n E state do

V m c state (m# n) do

C = T&tangle (n, m)

if state [n]. cost ~ state [m]. cost + C then

state [n] = { L, ~ } // Remove n from state

end if

end V

end V

end procedure

Fig. 17 Trtmo

Note that both rules for O can be used to reduce to A. Consider the two deriva-

tions in Table V. Triangle-trimming notes that these two reductions to A relate

the costs of X and Z in any state that represents the left child of a 6’ node. If the

Cost(X) exceeds (or equals) the Cost(Z) in such a state, X is not necessary to find

a minimum cost reduction to A because the alternative path (using the second 6’

rule) can always be employed. Furthermore, if in all contexts (i e., for all children

of every operator) X is unnecessary if Cost(X) > Cost(Z), then we can eliminate

X from all states in which that condition holds. Because many of these states may

have differed only in X — either from differing costs or deriving rules — eliminating

ACM Transactions on Programming Langnages and Systems, Vol. 17, No. 3, May 1995

BURS Automata Generation . 477

X will cause them to become a single state.

3.4.3 Chain Rule Trimming. Two states are identical if they represent the same

nonterminals at the same costs with each respective nonterminal generated by the

same rule. Triangle-trimming removes nonterminals from states whenever possible,

thereby eliminating the possibility that two states differ on the particular costs or

rules involving those nonterminals. To minimize the number of states further, it

is necessary to bias the algorithm toward using the same rules whenever possible.

Biasing the algorithm toward using chain rules whenever possible increases the like-

lihood that two states will have used the same rules to derive a given nonterminal.

This bias can be forced by removing nonterminal entries from an item set prior to

closure when it can be determined that Closure () will restore those nonterminals

at an equal or lesser cost using chain rules.
In Figure 17, Trtrno, uses both triangle and chain rule trimming to prune non-

terminals from item sets so that they will be more likely to be identical, thereby

reducing the size of the generated tables and the table generation time.

3.4.4 Fully General Trimming. Nonterminal trimming does not need to be con-

strained to looking at pairs of nonterminals as it was in triangle and chain rule

trimming. While it may not be the case that a single nonterminal in an item set

subsumes any other, it may be the case that some set of nonterminals subsumes

another.

One can ask the simple question, “Given all the nonterminals, n,, in state N,

can one safely remove nonterminal nk?” This could be answered by attempting,

one by one, to remove nonterminals from the item set and determining by analysis

similar to triangle trimming if that removal would force more-costly matches to be

found. If not, the nonterminal can be safely removed.

It is not known how much, if any, general trimming would reduce the number

of states. The general approach to state trimming was not attempted because it

is significantly more expensive than triangle trimming. Because triangle trimming

tests pairs of nonterminals, the relative costs necessary for subsumption can be

cached for reuse easily (see Section 5.2). There is no simple relationship based on

a set of nonterminals that can be so easily stored and accessed.

4. DIVERGING GRAMMARS

Because all dynamic programming is done at compile-compile time, it is necessary

to anticipate all possible trees and generate states that can label the nodes of those

trees. To do this, there must be only a finite number of states. Grammars that do

not produce a finite number of states are said to dzverge [Pelegri-Llopart 1988].

A grammar diverges when it is possible for the derivation costs of a pair of non-

terminals in the same state to become arbitrarily distant. To prevent the BURS

table generation algorithm from attempting to enumerate an infinite set of states

for diverging grammars, a simple threshold test is used. A test is inserted into the

normalization procedure (Normahze CosLso) to determine the greatest cost differ-

ential between nonterminals in any given state. If that differential is above the

threshold value, the grammar is rejected as “probably diverging.”

Fortunately, code generation grammars do not typically diverge. This is be-

cause the nonterminals usually describe data values (e. g., registers, data, address-

ACM Transactions on Programming Languages and Systems, Vol. 17, No. 3, May 1995.

478 . Todd A. Proebsting

ing modes) that can be interchanged at a bounded cost. For instance, it is unlikely

that the cost of computing a value into memory could be arbitrarily more expen-

sive than computing a value into a register since there almost certainly is a store

instruction of fixed cost.

5 SPEED-OPTIMIZING TECHNIQUES

The previous routines provide many opportunities for speed optimization. Some

of the improvements are general techniques not specific to BURS table generation;

other improvements rely on subtle knowledge of BURS table generation.

5.1 Attempt Cheaper Alternatives First

It may appear that the two sets of nested loops in !i’1-trno could be jammed into

a single pair of nested loops for improved efficiency. Both loops have the intended

side-effect of removing nonterminals from the states. Since the loops iterate over

only the nonterminals that remain in the state, the second set of loops will normally

iterate fewer times than the first set. Because triangle trimming is an expensive

operation relative to chain rule trimming, it is more efficient to remove all possible

nonterminals via chain rule trimming and then attempt triangle trimming only on

the remainmg nonterminals.

5,2 Precomputing and Caching Values

In the previous routines, many situations exist where values can be computed once

and used many times. For instance, 1%-o~ecto requires the knowledge of which

nonterminals can appear in the ith dimension of operator op. Because this list is

invariant for a given rule set, it can be computed once and used repeatedly. Ef-

ficiency is also enhanced if the list of rules is partitioned by the operator of the

pattern, so that Compute Transttzons () will only iterate over the list of applicable

rules. The cost of transitive closure rules (Cost (n =$ m)) is precomputed advanta-

geously since it is used often by Z1-tmo and ‘i”rmngleo.

There are 0(IV2) possible pairs of nonterminals that may be used in a call to

Trmngle (), but in practice only very few pairs are ever used. Originally, Trtangleo

was implemented via a preco-mputed table. This precomputation consumed over

7570 of the execution time generating tables for a VAX grammar, and yet fewer

than 490 of the values were ever accessed. Changing the program to compute (and

cache) those values by need increased the speed tremendously

5.3 Defer Closure

If two item sets are equal before closure, then they must be equal after closure.

Because two item sets are chain rule trimmed before closure, it is also the case that

if two item sets are equal after closure, they must have been equal before closure.

By maintaining both preclosure and postclosure copies of an item set in a table,

the algorithm can check for the existence of an item set in the table by comparing

their preclosure representations. This allows the closure computation to be deferred

until it is known that the state is indeed new and must be added to the table.

ACM Transactions on Programmmg Languages and Systems, Vol 17, No, 3, May 1995.

BURS Automata Generation . 479

5.4 Item Set Equivalence

Determining whether an item set is already in a table of states is an expensive

operation, and this test is done for every entry in every transition table. The integer

subset 68000 grammar required over 425,000 calls to determine item set equivalence.

For two item sets to be equal, they must be equal for all of their items. Fortunately,

two observations make testing for equivalence much more efficient: two item sets

created as members of transition tables for different operators can never be equal,

and for any given operator it is only necessary to compare the entries corresponding

to the left-hand sides of the rules for that operator.

The same routines are used to implement the global States table and each of

the local op. reps[] tables. These tables are implemented as hash tables. Comput-

ing the hash function is also made more efficient by examining only the relevant

nonterminals. Calling Normahze Costso after Z7zmo, but before Closur-eo, allows

it to limit the nonterminals it must inspect. Again, the same nonterminals that

are relevant to determining item set equivalence are those that must be normalized

prior to a call to Closureo.

5.5 Specialize Memory Allocation

burg allocates and deallocates an enormous amount of memory to compute item sets

and transition tables. The primary source of allocation and deallocation of memory

is the tentative allocation of item sets by Compute Transttionso and Project (). Only

after an item set is allocated and computed can it be determined if an equivalent

state has already been seen, thereby allowing the deallocation of the item set.

Redundant item sets really must be deallocated—for a 68000 grammar the program

computed over 100,000 redundant item sets.

Fortunately, fixed allocation/deallocation patterns of particular data can lead to

very efficient memory management [Hanson 1990]. Item sets, after allocation, are

computed and then either retained forever or immediately released. Therefore, two

item set deallocation can never occur sequentially without an intervening alloca-

tion. This allows the creation of specialized deallocation and allocation routines

for item sets. The deallocation routine simply maintains a reference to the last dis-

carded item set and does not return the space to the heap. Allocation checks this

reference, and if the reference is not null, it returns the reference to the previously

deallocated value (and clears the reference); only if the reference is null does the

allocator request space from the heap.

5.6 Minimize Space

The single biggest user of memory is the item set representation. Item sets must

be kept as small as possible to avoid overconsumption of RAM by minimizing

the number of nonterminals in the normal-form grammar. A naive translation of

a grammar into normal form may produce too many nonterminals if it creates

different nonterminals that represent identical patterns. It is important (and easy)

to reuse previously created nonterminals.

57 Unprofitable Optimization

When an item set is normalized, the relative costs of all the nonterminals are

ret ained. This is unduly conservative because certain nonterminals can never be

ACM Transactions on Programmmg Languages and Systems, Vol. 17, No. 3, May 1995.

480 . Todd A. Proebsting

Table VI Code Size for burg

1 Function Lines (C/Yacc)

w

used in the same context, and could, therefore. be independently normalized within

the same item set. It is possible to partition the set of nonterminals based on

whether they can be used in the same context (i. e., in the zth dimension of a given

operator or as part of the same chain rule). Once the nonterminals are partitioned,

each partition can be independently normalized. The hope was that this would

cause more identical states to be found because differences between elements of

different partitions would now be irrelevant. Unfortunately, only the VAX grammar

showed any reduction in the number of states—two states were eliminated from over

500.

6. OUTPUT

The table generator must output two sets of data: the state transition tables for

labeling the subject tree and a mapping from (states x nonterminals) to rules for

reducing the matched tree and emitting code.

For the transition tables, it is necessary to output both the n-dimensional tran-

sition tables (op. tromsttton) and the mappings from states to representer states for

each dimension (op. reps [d]) since the transition tables are indexed by representer

states. For leaf nodes, it is only necessary to give the mapping from the node to its

unique state (leaf. state).

The reduction mapping is a table of all the states (States) and the rule fields

that correspond to each nonterminal. These fields indicate which rule produces the

given nonterminal. There is no need for the cost field at compile-time.

7. IMPLEMENTATION RESULTS

The new algorithm has been implemented in a system called burg [Fraser et al.

1992 b]. The input has two parts: a description of the operators (including the

arity and identifying value of each) and a list of grammar rules. The operators are

limited to being nullary (leaf), unary, or binary. (The arity was limited because

the intended application required only nullary, unary, and binary operators.) Each

rule includes an arbitrarily complex pattern, the nonterminal the pattern derives,

its cost, and a unique external rule number (for identification). The front end of

the table generator puts the rules into normal form.

As output, the program creates C routines and tables for labeling and reducing a

subject tree. The program can output either a simple table-driven tree jabeler and

reducer or a hard-coded labeler and reducer. The hard-coded routines incorporate

the time- and space-saving techniques in Fraser and Henry [1991].

The entire program is fewer than 4000 lines of code that splits evenly between

table generation routines and input/output routines. Table VI gives the number of

lines of code used to implement the table generator.

burg runs quickly on both simple and complex inputs. burg is compared to

ACM TransactIons on Programming Languages and Systems, Vol 17, No 3, May 1995.

BURS Automata Generation . 481

Table VII. Tlmmgs

Grammar Time (see) Ratio

Machine] Rules Henry’s burg

~

Table VIII. Number of States

Grammar States Rat io

Machine Rules Henry’s burg burg WI ‘Ihm (’IkimjNo Trim)

vax 291 1017 1017 1015 0998

MIPS 138 125 125 125 1.000

vax. bwl 524 493 946 610 0.645

mot. bwl 462 499 1295 835 0.645

Table IX. Size of Matchers

Grammar Data Size (bytes) Rat io

Machine burg I burg WI ?ikim (Tklm/No ‘Ihm)

vax 46160 41200 0.893

MIPS 2336 2336 1.000

vax bwl 57,008 41,040 0.720

mot. bwl 133,968 64,736 0483

Henry’s [1989] table generator, which was derived from the CODEGEN system.

Table VII gives a description of four sample input grammars and the execution

times for each system on each grammar. The first two grammars (used to generate

code generators for lcc [Fraser and Hanson 1995]) are for the VAX and the MIPS

R3000 RISC processor. Two others that were developed as part of the CODEGEN

project are integer (byte, word, and long) subsets of the VAX and Motorola 68000

processors. The number of rules is for the normalized grammar. The timings were

taken on a DECstation 5000 with 96MB of RAM-–the timings are more favorable

toward burg on machines with limited amounts of RAM.

Table VIII indicates the number of states generated for each grammar, with

and without triangle trimming. The differences in the number of generated states

between the burg and Henry’s system for the CODEGEN grammars can be at-

tributed to the presence of a state minimization postpass in Henry’s system that

is not present in burg. State minimization for BURS is similar to DFA state min-

imization. It is possible to eliminate states after they and the transition tables

have been generated by isolating and removing states that differ only in the re-

spective costs of each constituent nonterminal .3 The space savings did not seem

worth the additional complexity or time, and therefore, burg does not have a state

minimization pass.

Table IX indicates the effectiveness of triangle trimming at reducing the size of

3Because state mlnlmlzatlon is a postpass, It cannot make the program faster-it must make it

slower. Henry [1989] found that the additional time for the postpass was neghglble (< l?ZO) in his

system.

ACM Transactions on Programming Languages and Systems, Vol. 17, No. 3, May 1995.

482 . Todd A. Proebsting

Table X Inference Rules for Pascal’s “+”

Rule # LHS Pattern cost

1 mteger + ADD(mteger, integer) (o)

2 real + ADD(real, real) (o)

u3 set 4 ADD(set, set) (o)

4 real - mteger (1)
I

Table XI Type Rules for ICC’S Intermediate Representation

Rule # LHS Pattern cost

1 Int + ADDI(int, mt) (o)

2 double -+ ADDD(double, double) (o)

3 double + CVID (mt) (0)

the tables for encoding the BURS pattern matchers.

8. OTHER APPLICATIONS OF BURS

BURS technology has applications outside of instruction selection. For instance,

BURS can be used to do simple type inferencing, data structure auditing, and tree

simplification.

8.1 Simple Type Inferencing

Waite has used burg to automate simple type inferencing (personal communication.

W. Waite, 1991). In many Algol-like languages, arithmetic operators are overloaded

and may operate on different types. For example, in Pascal, “+” may operate on

sets, reals, or integers—-but both operands must be the same type. To add a real

and an integer, the compiler must realize that the integer must be converted to

a real before the addition. However, the compiler must not convert two integer

operands to reals.

BURS simplifies the process of determining which instance of the overloaded

operator must be used and what conversions (if any) must be performed. The

BURS grammar for this simple inference system is given in Table X. Given this

grammar, a BURS tree matcher will try to find a least-cost match of the tree.

The patterns chosen will indicate which type of “addition” must be used. If the

rule “real A integer” is used, then an integer must be converted to a real at that

location. Because the conversion rule has a cost greater than zero, it will not be

used unless necessary to find a legal parse of the tree.

8.2 Data Structure Auditing

BURS pattern matchers can also be used to determme lf a tree has any legal parses.

If the underlying grammar defines all legal tree structures, this can be used to audit

trees quickly to ensure that they are not malformed.

In an experiment, a BURS pattern matcher audited the intermediate represen-

tation generated by the front end of lcc [Fraser and Hanson 1995], an ANSI C

compiler. The IR trees were tested to see if they were correctly formed with re-

spect to basic types. A small portion of the grammar is given in Table XI. If the

matcher finds a parse, then the expression tree is legal; otherwise it is malformed.

After running the experiment on about 10,000 lines of C, a few trees were found

ACM Transactions on Programming Languages and Systems, Vol. 17, No, 3, May 1995.

BURS Automata Generation . 483

Table XII. Simplification Rules for lCC’S IR

~

that did not parse. The problem was not in ICC; it was in the IR documentation.

The documentation did not fully describe all the legal combinations of intermedi-

ate operators and types. The experiment was intended to search for bugs in the

implementation and succeeded in finding omissions in the documentation.

8.3 Tree Simplification

Tree pattern matching can also be used to find opportunities for tree simplification

in a compiler. Patterns can be used to represent opportunities for tree modifications

that will result in simpler or more efficient code.

A simple modification would be to substitute subtraction for the addition of a

negated integer. The example in Table XII gives rules for parsing the ADDI and

NEGI operators. When a BURS pattern matcher finds a parse for an expression

tree, it will choose to use rules #3 and #4 whenever possible since they have a lower

cost than the composition of rules #1 and #2. A subsequent simplification pass

would isolate these rules and perform the necessary tree modifications. Since the

matchers are automatically generated, it is a simple matter to build incrementally

the patterns that lead to simplifications.

9. RELATED WORK

9.1 BURS Technology

Bottom-up tree pattern matching was developed by Hoffmann and O’Donnell [1982].

Bottom-up pattern matching is theoretically optimal—relying on a single bottom-

up tree walk with a simple table lookup at each node in a tree to do the matching.

BURS technology relies on this technology for much of its speed.

Naively generating BURS states and state transition tables fails because the

tables become too large. (The same is also true for simple Hoffman-O’Donnell

bottom-up matchers without dynamic programming.) A typical CISC machine

description will generate over 1000 states. 4 Directly encoding the transition table

for a single binary operator would, therefore, require over 1,000,000 entries.

Fortunately, many of the rows (and columns) of bottom-up pattern-matching

transition tables are identical. To exploit this redundancy, index maps can be used

to encode much smaller tables. Index maps are vectors that map states of the

automaton to represented states for indexing a transition table. States may share a

given row or column of a transition table through a single indirection. Chase [1987]

demonstrated that these maps can be produced on-the-fly during table generation

thus avoiding superfluous work.

Pelegri-Llopart, the originator of BURS theory [Pelegri-Llopart 1988; Pelegri-

Llopart and Graham 1988], incorporated Chase’s ideas into a system that added

4The integer subset of a Motorola 68000 grammar has over 800 states (Table VII).

ACM Transactions on Programming Languages and Systems, Vol. 17, No. 3, May 1995.

484 . Todd A. Proebsting

cost information for dynamic programming at table generation time. In addition

to recognizing that dynamic programming could be done prior to compile-time, he

developed the theoretical foundation for showing that the process is theoretically

feasible for typical machine grammars. Pelegri-Llopart’s technique is not limited

to finding least-cost parses of an input tree; his BURS theory also incorporated

tree rewrites. A specification could include grammar rules that allowed a matched

tree to be rewritten for subsequent matches. This allowed the specification of

commutativity transformations, for instance.

Subsequent BURS systems, including the techniques described here, do not al-

low general rewrites, but instead defer that responsibility to another phase of the

compilation process. Balachandran, Dhamdhere, and Biswas [Balachandran et al

1990] simplified Pelegri’s model by disallowing rewrite rules, and they generalized

Chase’s ideas to use cost information.

Henry’s BUILD/CODEGEN system could build many different tree pattern-

matching systems for comparison of system build times and system run-times

[Henry and Damron 1989]. The system compared naive, Graham-Glanville, top-

down and bottom-up tree matchers with dynamic programming done both at build-

time and run-time. It also compared these with greedy-match disambiguation. The

performance comparison provides an enormous amount of information with respect

to the various tradeoffs.

Henry [1989] developed optimization techniques to limit the number of BURS

states produced during table generation. His system was derived from his ear-

lier CODEGEN/BUILD systems [Henry and Damron 1989]. With fewer states, a

smaller automaton is produced more quickly. Henry’s techniques are much more

aggressive than Chase’s simple index map techniques, but at the cost of increased

complexity. Henry [1989] states “The table builder uses space and time voraciously,

even though it uses very complex algorithms designed to minimize these resources. ”

The algorithm described in this article generalizes and simplifies his work. burg

and Henry’s system share the same specification language and therefore can be

directly compared on a variety of machine specifications. burg routinely shows

a factor of 10 to 30 improvement in generation speed. However, Henry’s system

undoubtedly suffers from its CODEGEN/BUILD roots as a more general research

tool for comparing different code generation techniques.

To decrease the size of the generated tables further, both Henry and Pelegri-

Llopart incorporate an additional postpass to minimize the number of states. Such

a pass is essentially a DFA state minimization pass that reduces the number of

states by finding states that do not differ with respect to the matches they encode

or the transitions they induce. They only differ with respect to the costs that they

encode—information that is not needed at compile-time.

9.2 Non-BURS Pattern-Matching Systems

Other code generation systems based on tree pattern matching and dynamic pro-

gramming have been developed. They differ primarily in what technology they use

to do tree pattern matching and in the fact that they do dynamic programming at

compile-time rather than compile-compile time.

Aho, Ganapathi, and Tjiang [Aho et al. 1989] created a tree manipulation lan-

guage and system called Twtg. Given a specification of tree patterns and associated

ACM Transactions on Programming Languages and Systems, Vol. 17, No. 3, May 1995,

BURS Automata Generation . 485

costs, Twig generates a tree automaton that will find the least-cost cover of a sub-

ject tree. Twig uses fast top-down Hoffmann-O’Donnell [Hoffmann and O’Donnell

1982] pattern matching in parallel with dynamic programming to find the least-

cost cover in O (patno x Itreel) time (where patno is the number of patterns in the

grammar, and Itreel is the size of the tree to be parsed).

The costs associated with patterns in Twig are more general than those afforded

by any BURS system. Twig may compute the cost of a pattern dynamically—

depending on semantic information available at compile-time. This flexibility fur-

ther allows Twig to abort certain matches if semantic predicates are not satisfied.

Thus, the applicability of Twig’s patterns is context sensitive. BURS cannot have

this flexibility since all costs must be compile-compile time constants to precompute

dynamic programming decisions.

A code-generator generator based on tree pattern matching was developed by

Emmelmann et al. [1989]. The Back End Generator (BEG) uses naive pattern

matching to find pattern matches within the tree IR to do instruction selection.

The least-cost cover of the tree is found using dynamic programming techniques

that are essentially identical to Twig’s. Like Twig, BEG can guard patterns with

semantic predicates.

A BEG specification, in addition to having instruction patterns, includes a de-

scription of the register set of the target machine. This specification is used to

generate the register allocator. Two different types of register allocators may be

generated: a simple on-the-fly allocator and a more complex postpass allocator that

processes the cover tree prior to emitting instructions. They found the code quality

and code generation times to be comparable to their handwritten CGS.

Both Twig and BEG have the advantage over BURS of being able to incorporate

semantic information into pattern matching and dynamic programming. However,

they generate pattern matchers that are significantly slower than pattern matchers

based on BURS technology. This is because (1) they use slower pattern-matching

technology (either top-down or naive) and (2) they do dynamic programming at

compile-time.

Fraser, Hanson, and Proebsting developed a code-generator generator based on

naive pattern matching and dynamic programming [Fraser et al. 1992a]. This

system, iburg, maintains the same interface as burg and can therefore be directly

compared. Although engineered for efficiency, the resulting matchers were still 6-12

times slower than burg’s.

10. CONCLUSION

The BURS table generation algorithm presented is a simple and efficient method

of producing BURS tables. Based on all available information, burg is significantly

faster than any other BURS system. The prototype implementation required fewer

than 2000 lines of C code for producing the BURS automata. It was able produce

these tables over 30 times more quickly than the previous “state-of-the-art” opti-

mizing system. burg does not sacrifice table compaction optimizations to achieve

this speed—to the contrary, the compaction techniques increase the overall speed
of the implementation by reducing the number of states that must be examined.

The algorithm employs only simple data structures and routines to generate

these tables quickly. To a large degree, this design simplicity increases efficiency.

ACM Transactions on Programming Languages and Systems, Vol. 17, No. 3, May 1995.

486 . Todd A. Proebsting

To increase speed further, optimizations that exploit the specific nature of BURS

table generation were isolated and are described here.

To reduce the number of created states a new technique of trimming states.

triangle trimming, has been developed to isolate nonterminals that can be removed

from a state. This trimming provides a many-fold reduction in the number of states

and a commensurate speedup in table generation.

ACKNOWLEDGMENTS

Robert Henry made his system available for comparison and explained much of

his early work in BURS table generation. Chris Fraser tested burg and provided

valuable implementation advice. Charles Fischer provided helpful comments on

early drafts of this article.

REFERENCES

AHO A V., GANAP~THI. M . AND TJIANG. S W K 1989. Code generation using tree matchmg

and dynamic programming ACM Trans Pmgmm. Lang. Syst 11, 4 (Ott), 491–516

BALACHANDRAN. A , DHAMDHERE, D M , AND BISWAS. S. 1990. Efficient retargetable code

generation using bottom-up tree pattern matchmg Comput. Lang 15, 3, 127-140

CHASE. D. R. 1987 An Improvement to bottom-up tree pattern matchmg. In Proceedings of

the 14th Annual Sympostum on Pmnczples of Programmmg Languages ACM, New York,

168-177

EMMELMANN. H , SCHROER. F -W., AND LANDWEHR. R. 1989. BEG—a generator for efficient

back ends In Proceedings of the SIGPLAN ’89 Conference on Programmmg Language
Deszgn and Implementation ACM, New York, 227-237

FRASER. C W. AND HANSON. D R. 1995 A Retargetable C Compder: Destgn and Implemen-

tation BenJamm/Cummings. Redwood City, Cahf

FRASER. C W AND HENRY R R 1991 Hard-coding bottom-up code generation tables to save

time and space Softw Pratt. Ezper 21, 1 (Jan.), 1–12

FRASER. C W , HANSON D R , AND PROEBSTING. T A 1992a. Engineering a simple, efficient

code-generator generator ACM Lett Program. Lang. Syst. 1, 3 (Sept), 213–226

FRASER C W , HENRY. R R , AND PROEBSTING. T A. 1992b. BURG — fast optimal mstruc-

tlon selectlon and tree parsing SIGPLAN Not. 27, 4 (Apr.), 68–76

HANSON. D R 1990 Fast allocation and deallocation of memory based on object hfetlmes

Sojtzu. Pratt. Ezper. 20, 1 (Jan), 5-12

HENRY. R R 1989 Encoding optimal pattern selectlon m a table-driven bottom-up tree-pattern

matcher. Tech Rep. 89-02-04, Unlv of Washington, Seattle, Wash.

HENRY R R AND DAMRON P C 1989 Performance of table-driven code generators using

tree-pattern matching. Tech Rep 89-02-02, Univ. of Washington, Seattle, Wash

HOFFMANN. C NI AND O DONNELL. M J 1982 Pattern matchmg m trees J ACM 29, 1

(Jan), 68-95

PELEGRI-LLOPART. E 1988 Rewrite systems, pattern matching, and code generation Ph D

thesis Computer Science Dlvmon Umv of Cahfnrnia, Berkeley

PELEGRI-LLOP~RT. E AND GRAHAM. S L 1988. Optimal code generation for expression trees

An apphcatlon of BURS theory In Proceedings of the 15th Annual Symposzum on Prznczples
of Programmmg Languages ACM, New York, 294–308

PROEBSTING. T. A. 1992. Simple and efficient BURS table generation. In Proceedings of the
SIGPLAN ’92 Conference on Programming Language Des~gn and Implementation ACM,

New York, 331–340.

Received December 1993; revised February 1995; accepted Aprd 1995

ACM Transactions on Programming Languages and Systems, Vol. 17, No. 3, May 1995

