Lecture 9
How to make a sound type system

Why types are good

Prevent errors: many simple errors are caught by types
Ensure memory safety or other desired properties
Document the program (purpose of parameters)

Make it easier to change program

Make compilation more efficient: remove checks, specialize operations

An unsound (broken) type system

A type system that aims to ensure some property but, in fact, fails.

For example: suppose we have a system that aims to ensure that if parameter is
of type Int, then it is only invoked with values of type Int. But we find a (tricky)
program that passes the type checker and ends up invoking the function with the
reference to a string. This is unsoundness.

Sometimes unsoundness is an intentional compromise:

» type castsin C
» covariance for function arguments and arrays

Often unintentional (unsoundness bugs in type systems), due to subtle interactions
between e.g. subtyping, generics, mutation, higher-order functions, recursion

Java and Scala’s Type Systems are Unsound *

The Existential Crisis of Null Pointers

Nada Amin
EPFL, Switzerland

nada.amin@epfl.ch

Abstract

We present short programs that demonstrate the unsound-
ness of Java and Scala’s current type systems. In partic-
ular, these programs provide parametrically polymorphic
functions that can turn any type into any type without
(down)casting. Fortunately, parametric polymorphism was
not integrated into the Java Virtual Machine (JVM), so these
examples do not demonstrate any unsoundness of the JVM.
Nonetheless, we discuss broader implications of these find-
ings on the field of programming languages.

Ross Tate
Cornell University, USA

ross@cs.cornell.edu

ture, we often develop a minimal calculus employing that
feature and then verify key properties of that calculus. But
these results provide no guarantees about how the feature in
question will interact with the many other common features
one might expect for a full language. The unsoundness we
identify results from such an interaction of features. Thus,
in addition to valuing the development and verification of
minimal calculi, our community should explore more ways
to improve our chances of identifying abnormal interactions
of features within reasonable time but without unreasonable

racanrrac and dictrantinne Tdaallv anr cammunnity coanld nra_

1. Introduction

In 2004, Java 5 introduced generics, i.e. parametric polymor-
phism, to the Java programming language. In that same year,
Scala was publicly released, introducing path-dependent
types as a primary language feature. Upon their release
12 years ago, both languages were unsound; the examples
we will present were valid even in 2004. But despite the fact
that Java has been formalized repeatedly [3, 4, 6, 9, 10, 18,
26, 38], this unsoundness has not been discovered until now.
It was found in Scala in 2008 [40], but the bug was deferred
and its broader significance was not realized until now.

—same paper, published in November 2016

Goal of today’s lecture

Explain that “expression has a type” is an inductively defined relation
Define precisely a small language:

> its abstract syntax (as certain math expressions)
» its operational semantics (interpreter written in math)
> its type rules

Show that our type system prevents certain kinds of errors

Background: inductively defined relations and sets
Define relation r C Z x Z using these rules (x, y range over Z):

W (zero)

(x.y)er
(x,y+1)er
(x.y)er
(x+1,y+1)er
(x.y)er
(x—1,y—1)er
For which of the following relations r are all the above rules true?

(increase right)

(increase both)

(decrease both)

Background: inductively defined relations and sets
Define relation r C Z x Z using these rules (x, y range over Z):

W (zero)
(x,y)er
(x,y+1)er

(x,y)er
(x+1,y+1)er

(x,y)er
(x—1,y—1)er
For which of the following relations r are all the above rules true?
> r={(xy)|x=0vy=0}7?

(increase right)

(increase both)

(decrease both)

Background: inductively defined relations and sets
Define relation r C Z x Z using these rules (x, y range over Z):

W (zero)
(x,y)er
(x,y+1)er

(x,y)er
(x+1,y+1)er

(x,y)er
(x—1,y—1)er
For which of the following relations r are all the above rules true?
» r={(x,y) | x=0Vy =0} ? No (increase right)

(increase right)

(increase both)

(decrease both)

Background: inductively defined relations and sets
Define relation r C Z x Z using these rules (x, y range over Z):

W (zero)
(x,y)er
(x,y+1)er

(x,y)er
(x+1,y+1)er

(x,y)er
(x—1,y—1)er
For which of the following relations r are all the above rules true?
» r={(x,y) | x=0Vy =0} ? No (increase right)
> r={(xy) | x<0A0<y}?

(increase right)

(increase both)

(decrease both)

Background: inductively defined relations and sets
Define relation r C Z x Z using these rules (x, y range over Z):

W (zero)
(x,y)er
(x,y+1)er

(x,y)er
(x+1,y+1)er

(x,y)er
(x—1,y—1)er
For which of the following relations r are all the above rules true?
» r={(x,y) | x=0Vy =0} ? No (increase right)
> r={(x,y) | x<0A0<y}?No

(increase right)

(increase both)

(decrease both)

Background: inductively defined relations and sets
Define relation r C Z x Z using these rules (x, y range over Z):

W (zero)
(x,y)er
(x,y+1)er

(x,y)er
(x+1,y+1)er

(x,y)er
(x—1,y—1)er
For which of the following relations r are all the above rules true?
» r={(x,y) | x=0Vy =0} ? No (increase right)
> r={(x,y) | x<0A0<y}?No
> r=7Zx7?"7

(increase right)

(increase both)

(decrease both)

Background: inductively defined relations and sets
Define relation r C Z x Z using these rules (x, y range over Z):

W (zero)
(x,y)er
(x,y+1)er

(x,y)er
(x+1,y+1)er

(x,y)er
(x—1,y—1)er
For which of the following relations r are all the above rules true?
» r={(x,y) | x=0Vy =0} ? No (increase right)
> r={(x,y) | x<0A0<y}?No
> r=7Zx7Z7Yes

(increase right)

(increase both)

(decrease both)

Background: inductively defined relations and sets
Define relation r C Z x Z using these rules (x, y range over Z):

0oer (zero)
(x()}(/’i/r)f);r (increase right)
(x,y)er .
rlyti)er (increase both)
(x.y)er

x—t.y—1)er (decrease both)

For which of the following relations r are all the above rules true?
» r={(x,y) | x=0Vy =0} ? No (increase right)
> r={(x,y) | x<0A0<y}?No
» r=7Zx7Z?7Yes

What is the smallest r (wrt. C) for which rules hold? (?

Background: inductively defined relations and sets
Define relation r C Z x Z using these rules (x, y range over Z):

0oer (zero)
(x()}(/’i/r)f);r (increase right)
(x,y)er .
rlyti)er (increase both)
(x.y)er

x—t.y—1)er (decrease both)

For which of the following relations r are all the above rules true?
» r={(x,y) | x=0Vy =0} ? No (increase right)
> r={(x,y) | x<0A0<y}?No
» r=7Zx7Z?7Yes

What is the smallest r (wrt. C) for which rules hold? (? No.

Background: inductively defined relations and sets
Define relation r C Z x Z using these rules (x, y range over Z):

0oer (zero)
(x()}(/’i/r)f);r (increase right)
(x.y)er :
rlyti)er (increase both)
(x.y)er

x—t.y—1)er (decrease both)

For which of the following relations r are all the above rules true?
» r={(x,y) | x=0Vy =0} ? No (increase right)
> r={(x,y) | x<0A0<y}?No
» r=7Zx7Z?7Yes
What is the smallest r (wrt. C) for which rules hold? (? No. r = {(x,y) | x < y}

Example derivation of (-3,—1) € r

(0,0)er

(0,1)

(0,2)er
(1her
_(20)er
(8, -Ner

(0.0)cr (zero)
(x()}(/’—{)f)er (increase right)
(x +()1(7 i) +€1) — (increase both)
(xy)er

x—1y—1)er (decrease both)

Proof that our rules define {(x,y) | x < y}

Establish two directions:

> if there exists a derivation, then x < y
Strategy: induction on derivation, go through each rule

» if x < y then there exists a derivation
Strategy (problem-specific): we can find an algorithm that given x, y finds
derivation tree (what is the algorithm?)

Proof that our rules define {(x,y) | x < y}

Establish two directions:

> if there exists a derivation, then x < y
Strategy: induction on derivation, go through each rule

» if x < y then there exists a derivation
Strategy (problem-specific): we can find an algorithm that given x, y finds
derivation tree (what is the algorithm?)

Example algorithm: start from (0, 0), then

derive (0,y — x) in y — x steps of “increase right”,

then depending on whether x < 0 or x > 0 apply “increase both” or “decrease
both” rule | x| times.

Context-Free Grammars as Inductively Defined Relations

Inductive definitions work on multiple relations as well
Context-free grammars: mutually defined sets of strings (sets are relations)
Each non-terminal corresponds to a set of strings. Let A= {a, b}

context-free grammar rule

inductive rule (S, N C A*)

S = aN
N = ¢
N = aNNb

weN
awe S

eeN
W1 EN,WQEN
awywob € N

Sets of first symbols for each non-terminal is also an inductively definable relation

Inductively defined relations

We can use inductive rules to define type systems, grammars, interpreters, ...
We define a relation r using rules of the form

h(X)er,....,ta(X) er
t(x)er

where {j(X) € r are assumptions and t(x) € r is the conclusion.
When n = 0 (no assumptions), the rule is called an axiom.

A derivation tree has nodes marked by tuples t(a) for some specific values a of x.
We define relation r as the set of all tuples for which there exists a derivation tree.
One can prove (in general case) that tuples for which there exists a derivation tree
give us precisely the smallest relation that satisfies the rules!

Amyli language

Tiny language similar to one in the project.
Works only on integers and booleans.

(Initial) program is a pair (e, tiop) Where

> ep is the top-level environment mapping function names to function
definitions

> top is the top-level term (expression) that starts execution

Function definition for a given function name is a tuple of: parameter list X,
parameter types 7, expression representing function body t, and result type .

Expressions are formed by invoking primitive functions (+, —, <, &&), invocations
of defined functions, or if expressions.
No local val definitions nor match. e will remain fixed

Amyli: abstract syntax of terms

t:=true| false | c; | f(ty,...,tn) | if (f) t; else b
where

» ¢, € Z denotes integer constant

> f denotes either application of a user-defined function or one of the primitive
operators

Program representation as a mathematical structure

Pract = (€, fact(2))
where environment e is defined by:

e(fact) = (n, (parameters)
Int, (their types)
if (n<1)1else nxfact(n—1), (body)
Int (result type)
)

Operational semantics of Amyli: if expression

Given a program with environment e, we specify the result of executing the
program as an inductively defined binary (infix) relation “~»” on expressions.
If the top-level expression becomes a constant after some number of steps of ~»,
we have computed the result: -5 ¢
Rules for if:
b~ b
(if (b) t; else) ~ (if (P) t; else 1)

(if (frue) t; else b)) ~ 1

(if (false) l else tg) ~ b
b, b, t;, t range over expressions

Operational semantics of Amyli: primitives

Logical operators:
by ~ b}
(b1 && bp) ~ (b} && b2)

(true && bp) ~ bo

(false && by) ~ false

Arithmetic:
ki ~ K}

(ki + ko) ~ (ky + k2)
ko ~ k;

(c+ k)~ (c+ k)

C1,C0,CEZ, C=Cy+ Co

ce’

(c1+ec)~cC

Operational semantics: user function f

If ¢1,...,ci_1 are constants, then (as expected in call-by-value)

fi~tf
f(C1,...,C,'_1,t,',...)M f(C1,...,C,'_1,tl{,...)

Let the environment e define f by e(f) = ((x1,...,Xn), T, t, 70)

» (xy,...,Xpn) is the list of formal parameters of f

> {; is the body of the function f
Then we have a rule

f(ct,...,Cn) ~ t[X1 :=C1,...,Xn = Cp]

In general, if t is term, then t[x; := t,..., xn := t;] denotes result of substituting

(replacing) in t each variable x; by term ;.

Execution of factorial example program

Pract = (e, fact(2))
where e(fact) = (n, Int, if (n < 1) 1 else nx fact(n — 1), Int)

fact(2) ~

Execution of factorial example program

Pract = (e, fact(2))
where e(fact) = (n, Int, if (n < 1) 1 else nx fact(n — 1), Int)

fact(2) ~
if(2<1)1else2xfact(2 —1)~

Execution of factorial example program

Pract = (€, fact(2))
where e(fact) = (n, Int, if (n < 1) 1 else nx fact(n— 1), Int)

fact(2) ~
if(2<1)1else2xfact(2 —1)~
if (false) 1 else 2 x fact(2 — 1) ~

Execution of factorial example program

Pract = (€, fact(2))
where e(fact) = (n, Int, if (n < 1) 1 else nx fact(n— 1), Int)

fact(2) ~
if(2<1)1else2xfact(2 —1)~
if (false) 1 else 2 x fact(2 — 1) ~
2xfact(2 —1) ~

Execution of factorial example program

Pract = (€, fact(2))
where e(fact) = (n, Int, if (n < 1) 1 else nx fact(n— 1), Int)

fact(2) ~
if(2<1)1else2xfact(2 —1)~
if (false) 1 else 2 x fact(2 — 1) ~
2xfact(2 —1) ~

2 x fact(1) ~

Execution of factorial example program

Pract = (€, fact(2))
where e(fact) = (n, Int, if (n < 1) 1 else nx fact(n— 1), Int)

fact(2) ~

if(2<1)1else2xfact(2 —1)~

if (false) 1 else 2 x fact(2 — 1) ~
2xfact(2 —1) ~

2 x fact(1) ~

2« (if(1<1)1else1xfact(1—1))~

Execution of factorial example program

Pract = (€, fact(2))
where e(fact) = (n, Int, if (n < 1) 1 else nx fact(n— 1), Int)

fact(2) ~

if(2<1)1else2xfact(2 —1)~

if (false) 1 else 2 x fact(2 — 1) ~
2xfact(2 —1) ~

2 x fact(1) ~

2« (if(1<1)1else1xfact(1—1))~
2 x (if (true) 1 else 1 x fact(1 — 1)) ~

Execution of factorial example program

Pract = (€, fact(2))
where e(fact) = (n, Int, if (n < 1) 1 else nx fact(n— 1), Int)

fact(2) ~

if(2<1)1else2xfact(2 —1)~

if (false) 1 else 2 x fact(2 — 1) ~
2xfact(2 —1) ~

2 x fact(1) ~

2« (if(1<1)1else1xfact(1—1))~
2 x (if (true) 1 else 1 x fact(1 — 1)) ~
2x1 -~

Execution of factorial example program

Pract = (€, fact(2))
where e(fact) = (n, Int, if (n < 1) 1 else nx fact(n— 1), Int)

fact(2) ~

if(2<1)1else2xfact(2 —1)~

if (false) 1 else 2 x fact(2 — 1) ~
2xfact(2 —1) ~

2 x fact(1) ~

2« (if(1<1)1else1xfact(1—1))~
2 x (if (true) 1 else 1 x fact(1 — 1)) ~
2x1 -~

2

Getting stuck

If a term t makes no sense, we introduce no rule to define its evaluation, so there
is no t’ such that t ~ t/
Example: consider this top-level expression:

if (5) 3else7

the expression 5 cannot be evaluated further and is a constant, but there are no
rules for when condition of if is a number constant; there are only rules for boolean
constants.

Such terms, that are not constants and have no applicable rules, are called stuck,
because no further steps are possible.

Stuck terms indicate errors. Type checking is a way to detect them statically,
without trying to (dynamically) execute a program and see if it will get stuck or
produce result.

Type Rules: Program

After the definition of operational semantics, we define type rules (also inductively).
Given initial program (e, t) define

Fo={(f, 74 x - x1n—=710) | (f,-,(11,...,7n), bk, 70) € €}

We say program type checks iff:
(1) the top-level expression type checks:

loFt:T

and
(2) each function body type checks:

ro@{(X1,T1),...,(Xn,Tn)}|— tf:To

for each (f, (x1,...,Xn), (71,...,7n), tr,70) € €

Type Rules are as Usual

Fr=b:Bool, THH:7, THEb:T
I (if (b) ty else) : 7

Fr-f:mqx--xm—=m, TEl:m, ..., Tt

M=f(t,....th) 70

We treat primitives like applications of functions e.g.
+ :Int x Int — Int

< :Int x Int — Bool

&& : Bool x Bool — Bool

Soundness through progress and preservation

Soundness theorem: if program type checks, its evaluation does not get stuck.
Proof uses the following two lemmas (a common approach):

» progress: if a program type checks, it is not stuck: if
Mr=t:r

then either t is a constant (execution is done) or there exists t' such that t ~

» preservation: if a program type checks and makes one ~ step,
then the result again type checks
in our simple system: it type checks and has the same type: if

Fr=t:r

and t ~ t' then
r-¢:r

Proof of progress and preservation - case of if
We prove conjunction of progress and preservation by induction on term ¢ such
that I' -t : 7. The operational semantics defines the non-error cases of an
interpreter, which enables case analysis. Consider if. By type checking rules, if
can only type check if its condition b type checks and has type Bool. By inductive
hypothesis and progress either b is constant or it can be reduced to a b'. If it is
constant one of these rules apply (so we get progress):

(if (true) t; else t) ~ t

(if (false) l else tg) ~ b
and the result, by type rule for if, has type 7 (preservation). If b’ is not constant,
the assumption of the rule
b~ b
(if (b) t; else b)) ~ (if (D) t; else)
applies, so t also makes progress. By preservation IH, b’ also has type Bool, so
the entire expression can be typed as 7 re-using the type derivations for t; and f.

Progress and preservation - user defined functions

Following the cases of operational semantics, either all arguments of a function
have been evaluated to a constant, or some are not yet constant.

If they are not all constants, the case is as for the condition of if, and we establish
progress and preservation analogously.

Otherwise rule

f(C1,...,Cn)M tf[X1 =0C1,...,Xp = Cn]
applies, so progress is ensured. For preservation, we need to show

M=tfx1:=¢C1,...,Xp:=Cp| : T (*)

where e(f) = ((x1,...,Xn), (11,...,7n), lt, 70) @and t; is the body of f. According to
typerulest=mand ¢ : 7.

Progress and preservation - substitution and types

Function f definition type checks, so I - t; : 79 where
M=re{(xy,m),...,(Xn,)}
Consider the type derivation tree for t; and replace each use of [’ - x; : 7; with
'+ ci: 7;. The result is a type derivation for (x):

MEt[x1 :=Cyy...,Xn:=Cn]: T

Therefore, the preservation holds in this case as well.

Progress and preservation - substitution and types

Function f definition type checks, so I - t; : 79 where
M=re{(xy,m),...,(Xn,)}

Consider the type derivation tree for t; and replace each use of [’ - x; : 7; with
I+ ¢ : 7. The result is a type derivation for (x):

MEt[x1 :=Cyy...,Xn:=Cn]: T (%)
Therefore, the preservation holds in this case as well.

Exercise: prove the above step that replacing variables with constants of the same
type transforms term that has type derivation with type 7 into a term that again has
a derivation with type 7. Is there a more general statement?

