How the symbol map
changes In case of
static scoping

Outer declaration
Int value is shadowed by
iInner declaration string value

Map becomes bigger as

we enter more scopes,

later becomes smaller again
Imperatively: need to make

maps bigger, later smaller again.

Functionally: immutable maps,
keep old versions.

class World {
Int sum: int value:
// value — int, sum — int
void add(int foo) {
// foo — int, value — int, sum — int
string z;
// z — string, foo — int, value — int, sum — int
sum = sum + value; value = 0O;
|
// value — int, sum — int
void main(string bar) {
// bar — string, value — int, sum — int
inty;
//y — int, bar — string, value — int, sum — int
sum = 0;
value = 10;
add();
//y — int, bar — string, value — int, sum — int
if (sum % 3==1){
string value;
// value — string, y — int, bar — string, sum — int
value = 1;
add();
print("inner value =", value);
print("'sum =" sum); }
// 'y — int, bar — string, value — int, sum — int
print("outer value =", value);

}

Representing Data =
T

. (X)) 1
 |nJava, the standard model is a mutable graph of
objects

e |t seems natural to represent references to symbols
using mutable fields (initially null, resolved during
name analysis)

e Alternative way is functional

— store the backbone of the graph as a algebraic data type
(immutable)

— pass around a map linking from identifiers to their
declarations

Note that a field class A {var f:T } is like f: Mapl[A,T]

Symbol Table (I') Contents

Map identifiers to the symbol with relevant information about the identifier
All information is derived from syntax tree - symbol table is for efficiency

— in old one-pass compilers there was only symbol table, no syntax tree

— in modern compiler: we could always go through entire tree, but symbol table can give faster and easier
access to the part of syntax tree, or some additional information

Goal: efficiently supporting phases of compiler ¢ /§

In the name analysis phase: 3

— finding which identifier refers to which definition

— we store definitions

What kinds of things can we define? What do we need to know for each ID?
variables (globals, fields, parameters, locals):
— need to know types, positions - for error messages
— |ater: memory layout. To compile x.f=y into memcopy(addr vy, addr x+6, 4)

e e.g.3rd field in an object should be stored at offset e.g. +6 from the address
of the object

e the size of data stored in x.f is 4 bytes

— sometimes more information explicit: whether variable local or global
methods, functions, classes: recursively have with their own symbol tables

Functional: Different Points, Different I

class World { M= { (suw, iut), (count i}
Int sum;
void add(int foo) { — = ™ | £o00:= it |
sum = sum + foo;
f,— e
void sub(intbar) {____ [= T, [bari=ivt]
sum = sum - bar;

]

Int count;

]

Imperative Way: Push and Pop

class World { o

Int sum;

void add(intfoo){ _ -
sum = sum + foo;

change table, record change

', revert changes from table

b —
void sub(intbar){____ [, = T, [bar:=int]

sum = sum - bar; change table, record change

} revert changes from table
Int count;

]

Imperative Symbol Table

e Hash table, mutable MaplID,Symbol]
Example:

— hash function into array

— array has linked list storing (ID,Symbol) pairs
e Undo stack: to enable entering and leaving scope
e Entering new scope (function,block):

— add beginning-of-scope marker to undo stack

Adding nested declaration (ID,sym)
— lookup old value symOld, push old value to undo stack
— insert (ID,sym) into table
e |eaving the scope
— go through undo stack until the marker, restore old values

Functional: Keep Old Version

class World {
Int sum;

sum = sum + foo;
o

fe—

sum = sum - bar;

]

Int count;

]

VOid add(int fOO) { 7 — Pl = r‘o [foo.= iVl‘*T

create new Iy, keep old I

void sub(intbar){___ = T, [bar:=iwt]

create new I ,, keep old I,

Functional Symbol Table Implemented

e Typical: Immutable Balanced Search Trees

Simplified. In practice, BST(A],

sealed abstract class BST
store Int key and value A

case class Empty() extends BST
case class Node(left: BST, value: Int, right: BST) extends BST

V,
/ \

v, Vv
ANAN

e Updating returns new map, keeping old one
— lookup and update both log(n)
— update creates new path (copy log(n) nodes, share rest!)
— memory usage acceptable

Lookup

def contains(key: Int, t : BST): Boolean =t match {
case Empty() => false
case Node(left,v,right) => {
if (key ==v) true
else if (key < v) contains(key, left)
else contains(key, right)

]
]

Running time bounded by tree height. contains(6,t) ?

Insertion

def add(x : Int, t : BST) : Node =t match {
case Empty() => Node(Empty(),x,Empty())
case t @ Node(left,v,right) => {
it (x<v) Node(&cfjd(x, Ieft)’, v, right)
else If (x==v) t
else Node(left, v, add(x, right))
} —
J

Both add(x,t) and t remain accessible.

Running time and newly allocated nodes
pbounded by tree height.

Dert
Stwcuves

Balanced Trees: Red-Black Trees

CLIFFORD STEIN
12 Bmaryv Search lTrees 256
12.1 What 1s a binary search tree? 286
| 12.2 Querying a binary search tree 2489
12.3 Insertion and deletion 294
12.4 Randomly built binary search trees 299

Red-Black Trees 308
13.1 Properties of red-black trees 308
13.2 Rotations 3/2

13.3 Insertion 315

13.4 Deletion 323

14 Augmenting Data Structures 339
JCTION TO 14.1 Dynamic order statistics 339
14.2 How to augment a data structure 345

ALGORITHMS 143 Interval trees 348

Cwhwnis Okasaki & Puve [y Fuunchoval

Balanced Tree: Red Black Tree

Goals:

e ensure that tree height remains at most log(size)
- add(1,add(2,add(3,...add(n,Empty())...))) =~ linked list ><

e preserve efficiency of individual operations:
rebalancing arbitrary tree: could cost O(n) work

Solution: maintain mostly balanced trees: height still O(log size)

sealed abstract class Color
case class Red() extends Color O
case class Black() extends Color . b \é')

sealed abstract class Tree

case class Empty() extends Tree

case class Node(c: Color,left: Tree,value: Int, right: Tree)
extends Tree

Properties of red-black trees

A red-black tree 15 a binary search tree with one extra bit of storage per node: 1ts
color, which can be either RED or BLACK. By constraining the node colors on any
simple path from the root to a leaf, red-black trees ensure that no such path 1s more
than twice as long as any other, so that the tree 1s approximately balanced.

Each node of the tree now contains the attnibutes color, key, left, right, and p. 1t
a child or the parent of a node does not exist, the corresponding pointer attribute
ol the node contains the value NIL. We shall regard these NILs as bemg poimnters to

leaves (external nodes) of the binary search tree and the normal, key-bearing nodes
as being mternal nodes of the tree.

A red-black tree 1s a binary tree that satisfies the tollowing red-black properties:

. Every node is either red or black.

balanCEd 2. The root 1s black.

tree

3. Every leal (NIL) 1s black.
COnSt ra | ntS 4. If a node 1s red, then both 1ts children are black.
3

. For each node, all simple paths from the node to descendant leaves contain the
same number of black nodes.

From 4. and 5.: tree height is O(log size).
Analysis is similar for mutable and immutable trees.
for immutable trees: see book by Chris Okasaki

Balancing

def balance(c: Color, a: Tree, x: Int, b: Tree): Tree = (c,a,x,b) match {
case (Black(),Node(Red(),Node(Red(),a,xV,b),yV,c),zV,d) =>
Node(Red(),Node(Black(),a,xV,b),yV,Node(Black(),c,zV,d))

(¥)
_ \
a \bC > q/C{b cgad

case (Black(),Node(Red(),a,xV,Node(Red(),b,yV,c)),zV,d) =>
Node(Red(),Node(Black(),a,xV,b),yV,Node(Black(),c,zV,d))

case (Black(),a,xV,Node(Red(),Node(Red(),b,yV,c),zV,d)) =>
Node(Red(),Node(Black(),a,xV,b),yV,Node(Black(),c,zV,d))
case (Black(),a,xV,Node(Red(),b,yV,Node(Red(),c,zV,d))) =>
Node(Red(),Node(Black(),a,xV,b),yV,Node(Black(),c,zV,d))
case (c,a,xV,b) => Node(c,a,xV,b)

a

Insertion

def add(x: Int, t: Tree): Tree = {

def ins(t: Tree): Tree =t match {
case Empty() => Node(Red(),Empty(),x,Empty())
case Node(c,a,y,b) =>
if (x<y) balance(c, ins(a), y, b)
else if (x ==y) Node(c,a,y,b)
else balance(c,a,y,ins(b))
J
makeBlack(ins(t))
J

def makeBlack(n: Tree): Tree = n match {
case Node(Red(),l,v,r) => Node(Black(),l,v,r)
case =>n

} Modern object-oriented languages (e.g. Scala)
support abstraction and functional data structures.
Just use Map from Scala.

Exercise

Determine the output of the following program assuming static
and dynamic scoping. Explain the difference, if there is any.

object MyClass {
val x =5
def foo(z: Int): Int={x+ 2z}
def bar(y: Int): Int = {
valx=1:valz=2
foo(y)

J
def main() {

val x =7
println(foo(bar(3)))

]
]

