Recursive Descent
LL(1) Parsing

- useful parsing technique
- to make 1t work, we might need to transform the grammar



Recursive Descent Is Decent

Recursive descent Is a decent parsing technigue

— can be easily implemented manually based on the
grammar (which may require transformation)

- efficient (linear) in the size of the token sequence

Correspondence between grammar and code
- concatenation —>
- alternative (|) — if
- repetition (*) — while
-~ nonterminal —> recursive procedure




A Rule of While Language Syntax

// Where things work very nicely for recursive descent!

statmt ::=
println ( stringConst , ident )
| ident = expr
| if (expr ) statmt (else statmt)’

| while ( expr ) statmt
| { statmt™ |



Parser for the statmt ( -> code)

def skip(t : Token) = if (lexer.token == t) lexer.next
else error(“Expected”+ t)
def statmt ={
if (lexer.token == Println) { lexer.next:
skip(openParen); skip(stringConst); skip(comma);
skip(identifier); skip(closedParen)
} else if (lexer.token == Ident) { lexer.next;
skip(equality); expr
} else if (lexer.token == ifKeyword) { lexer.next;
skip(openParen); expr; skip(closedParen); statmt;
if (lexer.token == elseKeyword) { lexer.next; statmt }
// | while ( expr ) statmt



Continuing Parser for the Rule

// | while ( expr ) statmt

} else if (lexer.token == whileKeyword) { lexer.next;
skip(openParen); expr; skip(closedParen); statmt

// | { statmt™ ]

} else if (lexer.token == openBrace) { lexer.next;
while (isFirstOfStatmt) { statmt }
skip(closedBrace)

} else { error(“Unknown statement, found token ” +
lexer.token) }



How to construct if conditions?

statmt ::= println ( stringConst , ident )
| if (expr ) statmt (else statmt)’
| while ( expr ) statmt

Look what each alternative starts with to decide what to parse
® Here: we have terminals at the beginning of each alternative

®* More generally, we have ‘first’ computation, as for regular
expressions

® Consider a grammar G and non-terminal N
L.(N) = { set of strings that N can derive }

e.g. L(statmt) - all statements of while language
first(N) ={a | aw in L.(N), a - terminal, w - string of terminals}

first(statmt) = { printin, ident, if, while, { }
first(while ( expr ) statmt) = { while } - we will give an algorithm



Formalizing and Automating
Recursive Descent: LL(1) Parsers




Task: Rewrite Grammar to make it
suitable for recursive descent parser

® Assume the priorities of operators as in Java

expr ::=expr (+|-]*|/) expr

| name | (' expr )’
name ::= ident




Grammar vs Recursive Descent Parser

expr ::= term termList def expr = { term; termList }
termList ::= + term termList def termList =
| - term termlList if (token==PLUS) {
€ skip(PLUS); term; termList
term ::= factor factorList } else if (token==MINUS)
factorlList ::= * factor factorList skip(MINUS); term; termlList
| / factor factorList }
| € def term = { factor; factorList ]

factor ::= name | ( expr )

name ::= ident def factor =

if (token==IDENT) name

Note that the abstract trees we would EIS? If (t0ken==OPAR? {
create in this example do not strictly ~ SKip(OPAR); expr; skip(CPAR)

follow parse trees. } else error("expected ident or )")



Rough General ldea

def A =
if (token € T1) {
B B

1 ® 00 p

else if (token € T2) {
C, ... C,

} else if (token € T3) {
D D

1 ® 00 r

} else error("expected T1,T2,T3")

where:
T1=first(B, ... B )
T2 = first(C, ... C )
T3 =first(D, ... D))
first(B, ... B)) ={a€X | B,...B, =...= aw]
T1, T2, T3 should be disjoint sets of tokens.



Computing first in the example

expr ::= term termList first(name) = tident;
termList ::= + term termList first(( expr))={(}
| -term termList first(factor) = first(hame)
| € U first( ( expr))
term ::= factor factorList = tident} Ui ( ]
factorList ::= * factor factorList = tident, ( }
| / factor factorList first(* factor factorList) ={ * }
| € first(/ factor factorList) ={ / }
factor ::= name | ( expr ) first(factorList) = { *. /]
name ::= Ident first(term) = first(factor) = {ident, ( }
first(termList) ={ +, - }
first(expr) = first(term) = {ident, ( }



Algorithm for first: Goal

Given an arbitrary context-free grammar with a
set of rules of the form X ::=Y,...Y_compute

first for each right-hand side and for each
symbol.

How to handle

® alternatives for one non-terminal
® sequences of symbols

® nullable non-terminals

® recursion



Rules with Multiple Alternatives

first(A) = first(B,... B)

__ U first(C, ... C,

U first(D, ... D)

Sequences

if not nullable(B,)

first(B,... B,) = first(B,) U ... U first(B,)

if nullable(B,), ..., nullable(B, ,) and
not nullable(B,) or k=p



Abstracting into Constraints

recursive grammar: constraints over finite sets: expr' is first(expr)

expr ::= term termList expr' =term’
termList ::= + term termList termList' = {+]}
| - term termList U {-}
| €
term ::= factor factorList term' = factor’
factorList ::= * factor factorList | |factorList' ={*}
| / factor factorList U{/}
€
factor ::= name | ( expr ) factor' = name' U { (}
name ::= ident name' ={ ident }

For this nice grammar, there is
Nno recursion In constraints.
Solve by substitution.

nullable: termList, factorList



Example to Generate Constraints

terminals: a,b
non-terminals: S, X, Y, Z

reachable (from S):

productive: First sets of terminals:
nullable: S'' XY Z < {ab}



Example to Generate Constraints

S=XUY
| X'={b}US
Y=2UX UY

/' =1{a}

terminals: a,b These constraints are recursive.
non-terminals: S, X, Y, Z How to solve them?

S XY Z < {ab}
How many candidate solutions
reachable (from S): S, X, Y, Z * in this case?

productive: X, Z, S, Y * for k tokens, n nonterminals?
nullable: Z




Iterative Solution of first Constraints

Sl X| Yl Z| ' ' '
. 000 0 > =X UY
2.  { (b} (b} f{a) X'={bjUS
3. (b} (b} {a.b} {a) V=7 UX UV
4. {a,b}{a,b}ia,b} {a} -
5. {ab}{ab}{ab} {a] /' = {a}

e Start from all sets empty.
* Evaluate right-hand side and
assign It to left-hand side.

* Repeat until it stabilizes.
Sets grow In each step

* |nitially they are empty, so they can only grow
* if sets grow, the RHS grows (U is monotonic), and so does LHS
* they cannot grow forever: in the worst case contain all tokens



Constraints for Computing Nullable

® Non-terminal is nullable if it can derive €
Sl — Xl | Yl
X'=0|(S"&Y')

' Y'=(Z'& X' &0) | (Y'&O)
'=110

S X,Y.,Z &1{0,1} S XY 7/
O - not nullable .0 0O O O
1 - nullable .0 0O 0 1
| - disjunction .0 0 0 1

& - conjunction | | |
again monotonically growing



Computing first and nullable

® Glven any grammar we can compute

- for each non-terminal X whether nullable(X)
- using this, the set first(X) for each non-terminal X

® General approach:

- generate constraints over finite domains, following
the structure of each rule

- solve the constraints iteratively

® start from least elements
® keep evaluating RHS and re-assigning the value to LHS
® stop when there I1s no more change



Summary: Algorithm for nullable

nullable = {}

changed = true
while (changed) {
changed = false
for each non-terminal X
if (X is not nullable) and
(grammar containsrule X:u=¢| .. )
X:=Y1..Yn|..

or (grammar contains rule
where {Y1,....Yn} € nullable)
then {

nullable = nullable U {X}
changed = true

]



Summary: Algorithm for first

for each nonterminal X: first(X)={}
for each terminal t: first(t)={t}
repeat

for each grammar rule X ::=Y(1) ... Y(k)
fori=1toKk

if i=1 or{Y(1),....Y(i-1)} € nullable then
first(X) = first(X) U first(Y(i))

until none of first(...) changed in last iteration




Follow sets. LL(1) Parsing Table



Exercise Introducing Follow Sets

Compute nullable, first for this grammar:
stmtList ::= € | stmt stmtList
stmt ::= assign | block
assign ::=ID = ID ;
block ::= beginof ID stmtList ID ends

Describe a parser for this grammar and explain how it
behaves on this input:

beginof myPrettyCode
X = U;
Y = V;

myPrettyCode ends



How does a recursive descent parser

ook like?
def stmtList =
if (?727){} what should the condition be?
else { stmt: stmtList }
def stmt =

if (lex.token == D) assign
else if (lex.token == beginof) block
else error(“Syntax error: expected ID or beginonf”)

def block =
{ skip(beginof); skip(ID); stmtList; skip(ID); skip(ends) }



Problem Identified

stmtList ::= € | stmt stmtList

stmt ::= assign | block
assign ::=1D = ID ;
block ::= beginof ID stmtList ID ends

Problem parsing stmtList:
— ID could start alternative stmt stmtList

~ ID could follow stmt, so we may wish to parse €
that Is, do nothing and return

® For nullable non-terminals, we must also
compute what follows them



LL(1) Grammar - good for building
recursive descent parsers

Grammar is LL(1) if for each nonterminal X

- first sets of different alternatives of X are disjoint

- if nullable(X), first(X) must be disjoint from follow(X)
and only one alternative of X may be nullable

For each LL(1) grammar we can build
recursive-descent parser

EFach LL(1) grammar is unambiguous

If a grammar is not LL(1), we can sometimes
transform it into equivalent LL(1) grammar



Computing If a token can follow

first(B,...B)) ={a€X | B,..B, =...= aw]
follow(X)={a€X |S =...= ..Xa..}

There exists a derivation from the start symbol
that produces a sequence of terminals and
nonterminals of the form ...Xa...

(the token a follows the non-terminal X)




Rule for Computing Follow

Given X::=YZ (for reachable X)

then first(Z) < follow(Y)
and follow(X) € follow(Z)

now take care of nullable ones as well:

Y ...Y

Foreachrule X =Y, .Y .Y ..V

follow(Y ) should contain:
o first(Y .Y .,..Y))

p+2000 r

e also follow(X) if nullable(Y_..Y .Y)

p+1l " p+t2 " r



Compute nullable, first, follow

stmtList ::= € | stmt stmtList
stmt ::= assign | block

assign ::=1D = ID ;

block ::= beginof ID stmtList ID ends

s this grammar LL(1)?



Conclusion of the Solution

The grammar is not LL(1) because we have

* nullable(stmtList)
® first(stmt) N follow(stmtList) = {ID}

® |f a recursive-descent parser sees ID, it does
not know If it should

~ finish parsing stmtList or
~ parse another stmt



Table for LL(1) Parser: Example

S ::= B EOF
(1)
empty entry:
SR | . (B) thnyparsizg S,
i \2) if we see ),
report error
nullable: B Parsing table:
first(S) ={ (, EOF ]
follow(S) = {}
first(B) = { (]
follow(B) ={ ), (, EOF } parse conflict - choice ambiguity:

grammar not LL(1)

1is in entry because ( is in follow(B)
2 is in entry because (is in first(B(B))



Table for LL(1) Parsing

Tells which alternative to take, given current token:

choice : Nonterminal x Token -> Set|Int]
if t&first(C,...C ) add?2

g

to choice(A,t)

if t& follow(A) add K to
choice(A,t) where K is nullable

For example, when parsing A and seeing token t

C,)

q
13} means: parse alternative 3 (D,...D)

r

choice(A,t) = {2} means: parse alternative 2 (C, ...

choice(A,t

(A,t) =
choice(A,t) ={} means: report syntax error
(A,t)

choice(At) ={2,3} : not LL(1) grammar

)



General Idea when parsing nullable(A)

def A =
if (token € T1) {
B B

;- B,
else if (token € (T2 U T))) {
C, ... C,

} else if (token € T3) {
D D

... D
where: } // no else error, just return

T1=first(B, ... B )
T2 = first(C, ... C )
T3 =first(D, ...D )
T. = follow(A)

Only one of the alternatives can be nullable (here: 2nd)
T1,T2, T3, T. should be pairwise disjoint sets of tokens.



