
Chomsky’s Classification of Grammars

On Certain Formal Properties of Grammars
(N. Chomsky, INFORMATION AND CONTROL 9., 137-167 (1959) 

type 0: arbitrary string-rewrite rules

equivalent to Turing machines!

e X b => e X e X => Y

type 1: context sensitive, RHS always larger

O(n)-space Turing machines

     a X b => a c X b

type 2: context free - one LHS nonterminal

type 3: regular grammars (regular languages)



Parsing Context-Free Grammars

Decidable even for type 1 grammars, 

(by eliminating epsilons - Chomsky 1959)

We choose O(n3) CYK algorithm - simple

Better complexity possible:
General Context-Free Recognition in Less than Cubic Time, JOURNAL OF COMPUTER AND SYSTE

M SCIENCES 10, 308--315 (1975)
  

- problem reduced to matrix multiplication - n^k for k between 2 and 3

More practical algorithms known:
J. Earley An efficient context-free parsing algorithm, Ph.D. Thesis, 

Carnegie Mellon University, Pittsburgh, PA (1968)

can be adapted so that it automatically works in quadratic or linear time 

for better-behaved grammars



CYK Parsing Algorithm
C:

John Cocke and Jacob T. Schwartz (1970).  Programming languages and their compilers: 
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New York University. 

Y:

Daniel H. Younger (1967). Recognition and parsing of context-free languages in time n3. 

Information and Control 10(2): 189–208. 

K:

T. Kasami (1965). An efficient recognition and syntax-analysis algorithm for context-free 

languages. Scientific report AFCRL-65-758, Air Force Cambridge Research Lab, 

Bedford, MA. 



CYK Algorithm Can Handle 

Ambiguity



Why Parse General Grammars

•General grammars can be ambiguous: for 

some strings, there are multiple parser trees
•Can be impossible to make grammar 

unambiguous
•Some languages are more complex than 

simple programming languages
–mathematical formulas: 

x = y /\ z ? (x=y) /\ z              x = (y /\ z)
–natural language:

I saw the man with the telescope.
–future programming languages



Ambiguity 1

I saw the man with the telescope.

1)

2)



Ambiguity 2

Time flies like an arrow.

Indeed, time passes by quickly.

Those special “time flies” have an “arrow” as 

their favorite food.

You should regularly measure how fast the 

flies are flying, using a process that is much 

like an arrow.

…



Two Steps in the Algorithm

1) Transform grammar to normal form

called Chomsky Normal Form

2) Parse input using transformed grammar

dynamic programming algorithm
“a method for solving complex problems by breaking them down into simpler steps. 

It is applicable to problems exhibiting the properties of overlapping subproblems”



Dynamic Programming to Parse Input

Assume Chomsky Normal Form, 3 types of rules:

S’ → ε | S (only for the start non-terminal)

Ni → t (names for terminals)

Ni → Nj  Nk (just 2 non-terminals on RHS)

Decomposing long input:

find all ways to parse substrings of length 1,2,3,…

( ( ( ) ( ) ) ( ) ) ( ( ) )

Ni

Nk
Nj



Balanced Parentheses Grammar

Original grammar G

B → ε | B B | ( B )

Modified grammar in Chomsky Normal Form:

B1 → ε | B B | O M | O C

B  → B B | O M | O C

M → B C

O  → '(' 

C  → ')' 

Terminals: (  )  

Nonterminals:  B, B1, O, C, M, B



Parsing an Input

B1 → ε | B B | O M | O C

B  → B B | O M | O C

M → B C

O  → '(' 

C  → ')'

O O C O C O C C1

2

3

4

5

6

( ( ) ( ) ( ) )

1 2 3 4 5 6 8 9



Algorithm Idea

wpq – substring from p to q

dpq – all non-terminals that

         could expand to wpq

Initially  dpp has Nw(p,p)

key step of the algorithm:

if  X → Y Z  is a rule,

    Y is in dp r  , and

    Z is in d(r+1)q

then put X into dpq

 (p <= r < q), 

in increasing value of (q-p)



Algorithm
INPUT:  grammar G in Chomsky normal form 
               word w to parse using G
OUTPUT: true iff (w in L(G)) 
N = |w| 
var d : Array[N][N] 
for p = 1 to N { 
   d(p)(p) = {X | G contains X->w(p)} 
   for q in {p + 1 .. N} d(p)(q) = {} } 
for k = 2 to N // substring length 
  for p = 0 to N-k // initial position
    for j = 1 to k-1 // length of first half 
      val r = p+j-1; val q = p+k-1;
      for (X::=Y Z) in G
        if Y in d(p)(r) and Z in d(r+1)(q) 
           d(p)(q) = d(p)(q) union {X} 
return  S in d(0)(N-1)

( ( ) ( ) ( ) )

What is the running 

time as a function of 

grammar size and the 

size of input?

O(       )



Number of Parse Trees

Let w denote word ()()()
–it has two parse trees

Give a lower bound on number of parse 

trees of the word wn 
 (n is positive integer)

w5  is the word

()()() ()()() ()()() ()()() ()()()

CYK represents all parse trees compactly
–can re-run algorithm to extract first parse tree, 

or enumerate parse trees one by one


