
Expressive Power of Automata

For which of the following languages can you

find an automaton or regular expression:
– Sequence of open or closed parentheses of even

length? E.g. (), ((,)),)()))(, …

– as many digits before as after decimal point?

– Sequence of balanced parentheses

((()) ()) - balanced

 ()) (() - not balanced

– Comments from // until LF

– Nested comments like /* ... /* */ … */

Expressive Power of Automata

For which of the following languages can you

find an automaton or regular expression:
– Sequence of open or closed parentheses of even

length? E.g. (), ((,)),)()))(, …

– as many digits before as after decimal point?

– Sequence of balanced parentheses

((()) ()) - balanced

 ()) (() - not balanced

– Comments from // until LF

– Nested comments like /* ... /* */ … */

yes

No

No

Yes

No

Automaton that Claims to Recognize

{ anbn | n >= 0 }
Make the automaton deterministic

Let the resulting DFA have K states, |Q|=K

Feed it a, aa, aaa, …. Let qi be state after reading ai

 q0 , q1 , q2 , ... , qK

This sequence has length K+1 -> a state must repeat

 qi = qi+p p > 0

Then the automaton should accept ai+pbi+p .

But then it must also accept

ai bi+p

because it is in state after reading ai as after ai+p.

So it does not accept the given language.

Limitations of Regular Languages

• Every automaton can be made deterministic

• Automaton has finite memory, cannot count

• Deterministic automaton from a given state

behaves always the same

• If a string is too long, deterministic automaton

will repeat its behavior

Pumping Lemma

If L is a regular language, then there exists a

positive integer p (the pumping length) such that

every string s ∈ L for which |s| ≥ p, can be

partitioned into three pieces, s = x y z, such that

• |y| > 0

• |xy| ≤ p

• ∀i ≥ 0. xyiz L∈

Let’s try again: { anbn | n >= 0 }

Finite State Automata are Limited

Let us use (context-free) grammars!

Context Free Grammar for anbn

S ::= ε - first rule of this grammar

S ::= a S b - second rule of this grammar.

Example of a derivation (DEMO)

 S => aSb => a aSb b => aa aSb bb => aaabbb

Parse tree: leaves give us the result

Context-Free Grammars

G = (A, N, S, R)

• A - terminals (alphabet for generated words w A*)∈

• N - non-terminals – symbols with (recursive) definitions

• Grammar rules in R are pairs (n,v), written

 n ::= v where

n N is a non-terminal∈

v (A U N)* - ∈ sequence of terminals and non-terminals

A derivation in G starts from the starting symbol S

• Each step replaces a non-terminal with one of its right

hand sides

Example from before: G = ({a,b}, {S}, S, {(S,ε), (S,aSb)})

Parse Tree
Given a grammar G = (A, N, S, R), t is a parse tree of G

iff t is a node-labelled tree with ordered children that satisfies:

• root is labeled by S

• leaves are labelled by elements of A

• each non-leaf node is labelled by an element of N

• for each non-leaf node labelled by n whose children left to right

are labelled by p1…pn, we have a rule (n::= p1…pn) R∈

Yield of a parse tree t is the unique word in A* obtained by reading

the leaves of t from left to right

Language of a grammar G = words of all yields of parse trees of G

L(G) = {yield(t) | isParseTree(G,t)}

w L(G) t. w=yield(t) isParseTree(G,t)∈ ⇔ ∃ ∧

isParseTree - easy to check condition, given t

Harder: know if for a word there exists a parse tree

Grammar Derivation

A derivation for G is any sequence of words pi (A U N)*,∈ whose:

• first word is S

• each subsequent word is obtained from the previous one by

replacing one of its letters by right-hand side of a rule in R :

pi = unv , (n::=q) R, ∈

pi+1 = uqv

• Last word has only letters from A

Each parse tree of a grammar has one or more derivations, which

result in expanding tree gradually from S

• Different orders of expanding non-terminals may generate the

same tree

• Leftmost derivation: always expands leftmost non-terminal

•Rightmost derivation: always expands rightmost non-terminal

Remark

We abbreviate

S ::= p

S ::= q

as

S ::= p | q

Example: Parse Tree vs Derivation
Consider this grammar G = ({a,b}, {S,P,Q}, S, R) where R is:

S ::= PQ

P ::= a | aP

Q ::= ε | aQb

Show a derivation tree for aaaabb

Show at least two derivations that correspond to that tree.

Balanced Parentheses Grammar

Consider the language L consisting of precisely those

words consisting of parentheses “(“ and “)” that are

balanced (each parenthesis has the matching one)

• Example sequence of parentheses

((()) ()) - balanced, belongs to the language

 ()) (() - not balanced, does not belong

Exercise: give the grammar and example derivation for

the first string.

Balanced Parentheses Grammar

G1 S ::= ε | S(S)S

G2 S ::= ε | (S)S

G3 S ::= ε | S(S)

G4 S ::= ε | S S | (S)

These all define the same language, the language

of balanced parentheses.

Parse Trees and Syntax Trees

Id3 = 0

while (id3 < 10) {

 println(“”,id3);

 id3 = id3 + 1 }

source code

i

d

3

=

0
LF

w

id3

=

0

while

(

id3

<

10

)

lexer

characters words

(tokens)
trees

parser

assign

while

i 0

+

*
3

7 i

assign

a[i]

<

i 10

Compiler

While Language Syntax

This syntax is given by a context-free grammar:

program ::= statmt*

statmt ::= println(stringConst , ident)

 | ident = expr

 | if (expr) statmt (else statmt)?

 | while (expr) statmt

 | { statmt* }

expr ::= intLiteral | ident

 | expr (&& | < | == | + | - | * | / | %) expr

 | ! expr | - expr

Parse Tree vs Abstract Syntax Tree (AST)

while (x > 0) x = x - 1

Pretty printer: takes abstract syntax tree (AST) and outputs the

leaves of one possible (concrete) parse tree.

parse(prettyPrint(ast)) ≈ ast

Parse Tree vs Abstract Syntax Tree (AST)

• Each node in parse tree has children corresponding

precisely to right-hand side of grammar rules. The

definition of parse trees is fixed given the grammar

– Often compiler never actually builds parse trees in memory,

(but in our labs we will have explicit parse trees)

• Nodes in abstract syntax tree (AST) contain only useful

information and usually omit the punctuation signs.

We can choose our own syntax trees, to make it

convenient for both construction in parsing and for

later stages of our compiler or interpreter
– A compiler often directly builds AST

Abstract Syntax Trees for Statements

statmt ::= println (stringConst , ident)

 | ident = expr

 | if (expr) statmt (else statmt)?

 | while (expr) statmt

 | { statmt* }

abstract class Statmt

case class PrintlnS(msg : String, var : Identifier) extends Statmt

case class Assignment(left : Identifier, right : Expr) extends Statmt

case class If(cond : Expr, trueBr : Statmt,

 falseBr : Option[Statmt]) extends Statmt

case class While(cond : Expr, body : Expr) extends Statmt

case class Block(sts : List[Statmt]) extends Statmt

grammar:

AST classes:

Abstract Syntax Trees for Statements

statmt ::= println (stringConst , ident)

 | ident = expr

 | if (expr) statmt (else statmt)?

 | while (expr) statmt

 | { statmt* }

abstract class Statmt

case class PrintlnS(msg : String, var : Identifier) extends Statmt

case class Assignment(left : Identifier, right : Expr) extends Statmt

case class If(cond : Expr, trueBr : Statmt,

 falseBr : Option[Statmt]) extends Statmt

case class While(cond : Expr, body : Statmt) extends Statmt

case class Block(sts : List[Statmt]) extends Statmt

While Language with Simple Expressions

expr ::= intLiteral | ident

 | expr (+ | /) expr

statmt ::=

 println (stringConst , ident)

 | ident = expr

 | if (expr) statmt (else statmt)?

 | while (expr) statmt

 | { statmt* }

Abstract Syntax Trees for Expressions

abstract class Expr

case class IntLiteral(x : Int) extends Expr

case class Variable(id : Identifier) extends Expr

case class Plus(e1 : Expr, e2 : Expr) extends Expr

case class Divide(e1 : Expr, e2 : Expr) extends Expr

expr ::= intLiteral | ident

 | expr + expr | expr / expr

foo + 42 / bar + arg

Ambiguous Grammars

expr ::= intLiteral | ident

 | expr + expr | expr / expr

ident + intLiteral / ident + ident

Ambiguous grammar: if some token

sequence has multiple parse trees

(then it is has multiple abstract trees).

Each node in parse tree is given by

one grammar alternative.

Making Grammar Unambiguous

and Constructing Correct Trees

Introduction to LL(1) Parsing

Ambiguous Expression Grammar

expr ::= intLiteral | ident

 | expr + expr | expr / expr

has two parse trees, one suggested by

ident + intLiteral / ident

and one by

ident + intLiteral / ident

Example input:

ident + intLiteral / ident

Suppose Division Binds Stronger

expr ::= intLiteral | ident

 | expr + expr | expr / expr

has two parse trees, one suggested by

ident + intLiteral / ident

and one by a bad tree

ident + intLiteral / ident

We do not want arguments of / expanding into

expressions with + as the top level.

Example input:

ident + intLiteral / ident

Layering the Grammar by Priorities

expr ::= intLiteral | ident

 | expr + expr | expr / expr

is transformed into a new grammar:

expr ::= expr + expr | divExpr

divExpr ::= intLiteral | ident

 | divExpr / divExpr

The bad tree

ident + intLiteral / ident

cannot be derived in the new grammar.

New grammar: same language, fewer parse trees!

Left Associativity of /
expr ::= expr + expr | divExpr

divExpr ::= intLiteral | ident

 | divExpr / divExpr

Example input:

ident / intLiteral / ident x/9/z

has two parse trees, one suggested by

ident / intLiteral / ident (x/9)/z

and one by a bad tree

ident / intLiteral / ident x/(9/z)

We do not want RIGHT argument of / expanding

into expression with / as the top level.

Left Associativity - Left Recursion
expr ::= expr + expr | divExpr

divExpr ::= intLiteral | ident

 | divExpr / divExpr

No bad / trees

Still bad + trees

expr ::= expr + expr | divExpr

divExpr ::= divExpr / factor

 | factor

factor ::= intLiteral | ident

expr ::= expr + divExpr | divExpr

divExpr ::= factor | divExpr / factor

factor ::= intLiteral | ident

No bad trees.

Left recursive!

Left vs Right Associativity

expr ::= expr + divExpr | divExpr

divExpr ::= factor | divExpr / factor

factor ::= intLiteral | ident

Left associative

Left recursive,

so not LL(1).

expr ::= divExpr + expr | divExpr

divExpr ::= factor | factor / divExpr

factor ::= intLiteral | ident

Unique trees.

Associativity wrong.

No left recursion.

expr ::= divExpr exprSeq

exprSeq ::= + expr | ε

divExpr ::= factor divExprSeq

divExprSeq ::= / divExpr | ε

factor ::= intLiteral | ident

Unique trees.

Associativity wrong.

LL(1): easy to pick an

alternative to use.

Our Approach

expr ::= divExpr exprSeq

exprSeq ::= + expr | ε

divExpr ::= factor divExprSeq

divExprSeq ::= / divExpr | ε

factor ::= intLiteral | ident

initial grammar,

priorities: / +
expr ::= intLiteral | ident

 | expr + expr | expr / expr

LL(1) grammar

encoding priorities

LL(1) parser

tokens

from

lexer

parse tree, all

right associative
AST

change right into left

associativity,

abstract

Approach on an Example
expr ::= divExpr exprSeq

exprSeq ::= + expr | ε

divExpr ::= factor divExprSeq

divExprSeq ::= / divExpr | ε

factor ::= a | b | c | d

LL(1) grammar

encoding priorities

LL(1) parser

tokens

from

lexer

parse tree, all

right associative
AST

change right into left

associativity,

abstract

a + b / c + d
 expr

divExpr exprSeq

factor divExprSeq + expr

a divExpr exprSeq

 factor divExprSeq + expr

 b / divExpr divExpr divExprSeq

 factor divExprSeq factor

 c d

Right Associative Parse Trees into

Left Associative Abstract Syntax Tree
 expr

divExpr exprSeq

factor divExprSeq + expr

a divExpr exprSeq

 factor divExprSeq + expr

 b / divExpr divExpr divExprSeq

 factor divExprSeq factor

 c d

+

+

/

a
b c

d

left associative right associative

+

+

/

a

b c

d

correct

easy,

wrong

Exercise: Unary Minus
1) Show that the grammar

A ::= − A

A ::= A − id

A ::= id

is ambiguous by finding a string that has two different parse

trees. Show those parse trees.

2) Make two different unambiguous grammars for the same

language:

 a) One where prefix minus binds stronger than infix minus.

 b) One where infix minus binds stronger than prefix minus.

3) Show the syntax trees using the new grammars for the

string you used to prove the original grammar ambiguous.

4) Give a regular expression describing the same language.

Unary Minus Solution Sketch
1) An example of a string with two parse trees is

- id - id

The two parse trees are generated by these imaginary parentheses (shown

red): -(id-id) (-id)-id

and can generated by these derivations that give different parse trees

A => -A => - A - id => - id - id

A => A - id => - A - id => - id - id

2) a) prefix minus binds stronger:

A ::= B | A - id B ::= -B | id

 b) infix minus binds stronger

A ::= C | -A C ::= id | C - id

3) in two trees that used to be ambiguous instead of some A’s we have B’s in

a) grammar or C’s in b) grammar.

4) -*id(-id)*

