Expressive Power of Automata

For which of the following languages can you find an automaton or regular expression:

- Sequence of open or closed parentheses of even length? E.g. (), ((,),)()()(), ...
- as many digits before as after decimal point?
- Sequence of balanced parentheses
 ((()) ()) - balanced
 (()) (()) - not balanced
- Comments from // until LF
- Nested comments like /* ... */ /* ... */
Expressive Power of Automata

For which of the following languages can you find an automaton or regular expression:

- Sequence of open or closed parentheses of even length? E.g. (), ((,)),)()(), ... yes
- as many digits before as after decimal point? No
- Sequence of balanced parentheses
 ((()) ()) - balanced
 ()) (() - not balanced
- Comments from // until LF Yes
- Nested comments like /* ... */ /* ... */ No
Automaton that Claims to Recognize
\{ a^n b^n \mid n \geq 0 \}

Make the automaton deterministic
Let the resulting DFA have K states, |Q|=K
Feed it a, aa, aaa, Let q_i be state after reading a^i
q_0, q_1, q_2, ... , q_K
This sequence has length K+1 -> a state must repeat
q_i = q_{i+p} \quad p > 0
Then the automaton should accept a^{i+p} b^{i+p} .
But then it must also accept
a^i b^{i+p}
because it is in state after reading a^i as after a^{i+p}.
So it does not accept the given language.
Limitations of Regular Languages

- Every automaton can be made deterministic.
- Automaton has finite memory, cannot count.
- Deterministic automaton from a given state behaves always the same.
- If a string is too long, deterministic automaton will repeat its behavior.
Pumping Lemma

If L is a regular language, then there exists a positive integer p (the pumping length) such that every string $s \in L$ for which $|s| \geq p$, can be partitioned into three pieces, $s = x y z$, such that

- $|y| > 0$
- $|xy| \leq p$
- $\forall i \geq 0. \ xy^i z \in L$

Let’s try again: $\{ a^n b^n | n \geq 0 \}$
Finite State Automata are Limited

Let us use (context-free) grammars!
Context Free Grammar for $a^n b^n$

\[S ::= \varepsilon \quad \text{- first rule of this grammar} \]
\[S ::= a \, S \, b \quad \text{- second rule of this grammar.} \]

Example of a derivation (DEMO)

\[S \Rightarrow aSb \Rightarrow a\, aSb\, b \Rightarrow aa\, aSb\, bb \Rightarrow aaabbb \]

Parse tree: leaves give us the result
Context-Free Grammars

\[G = (A, N, S, R) \]

- **A** - terminals (alphabet for generated words \(w \in A^* \))
- **N** - non-terminals – symbols with (recursive) definitions
- Grammar rules in \(R \) are pairs \((n,v)\), written
 \[n ::= v \]
 where
 - \(n \in N \) is a non-terminal
 - \(v \in (A \cup N)^* \) - sequence of terminals and non-terminals

A derivation in \(G \) starts from the starting symbol \(S \in N \)

- Each step replaces a non-terminal with one of its right hand sides

Example from before: \(G = \{\{a,b\}, \{S\}, S, \{(S,\varepsilon), (S,aSb)\}\} \)
Parse Tree

Given a grammar \(G = (A, N, S, R) \), \(t \) is a **parse tree** of \(G \) iff \(t \) is a node-labelled tree with ordered children that satisfies:

- root is labeled by \(S \)
- leaves are labelled by elements of \(A \)
- each non-leaf node is labelled by an element of \(N \)
- for each non-leaf node labelled by \(n \) whose children left to right are labelled by \(p_1 \ldots p_n \), we have a rule \((n::= p_1 \ldots p_n) \in R \)

Yield of a parse tree \(t \) is the unique word in \(A^* \) obtained by reading the leaves of \(t \) from left to right

Language of a grammar \(G \) = words of all yields of parse trees of \(G \)

\(L(G) = \{\text{yield}(t) \mid \text{isParseTree}(G,t)\} \)

\(w \in L(G) \iff \exists t. \ w = \text{yield}(t) \land \text{isParseTree}(G,t) \)

\(\text{isParseTree} \) - **easy** to check condition, given \(t \)

Harder: know if for a word there exists a parse tree
Grammar Derivation

A *derivation* for G is any sequence of words $p_i \in (A \cup N)^*$, whose:

- first word is S
- each subsequent word is obtained from the previous one by replacing one of its letters by right-hand side of a rule in R:
 \[
 p_i = unv \quad (n::=q) \in R, \\
 p_{i+1} = uqv
 \]
- last word has only letters from A

Each parse tree of a grammar has one or more derivations, which result in expanding tree gradually from S:

- Different orders of expanding non-terminals may generate the same tree
- Leftmost derivation: always expands leftmost non-terminal
 - Rightmost derivation: always expands rightmost non-terminal
Remark

We abbreviate

\[S ::= p \]
\[S ::= q \]

as

\[S ::= p \mid q \]
Example: Parse Tree vs Derivation

Consider this grammar $G = (\{a,b\}, \{S,P,Q\}, S, R)$ where R is:

- $S ::= PQ$
- $P ::= a \mid aP$
- $Q ::= \varepsilon \mid aQb$

Show a derivation tree for $aaaabb$

Show at least two derivations that correspond to that tree.

```
S → PQ → aPQ → aaQ → aa aQb → aa aaQbb → aaaabbb
S → PQ → aQb → PaQbb → Paabbb → Paabb → aPabbb → aa aabbb
```
Balanced Parentheses Grammar

Consider the language L consisting of precisely those words consisting of parentheses “(“ and “)” that are balanced (each parenthesis has the matching one)

- Example sequence of parentheses

 ((()) ()) - balanced, belongs to the language

 ()) (() - not balanced, does not belong

Exercise: give the grammar and example derivation for the first string.
Balanced Parentheses Grammar

$G_1 \quad S ::= \varepsilon \mid S(S)S$

$G_2 \quad S ::= \varepsilon \mid (S)S$

$G_3 \quad S ::= \varepsilon \mid S(S)$

$G_4 \quad S ::= \varepsilon \mid S \ S \mid (S)$

These all define the same language, the language of balanced parentheses.
Parse Trees and Syntax Trees
```java
Id3 = 0
while (id3 < 10) {
    println("", id3);
    id3 = id3 + 1
}
```
While Language Syntax

This syntax is given by a context-free grammar:

```latex
\rightarrow \text{program} ::= \text{statmt}^* \\
\rightarrow \text{statmt} ::= \text{println} (\text{stringConst}, \text{ident}) \\
\rightarrow \quad | \text{ident} = \text{expr} \\
\rightarrow \quad | \text{if} (\text{expr}) \text{statmt} (\text{else} \text{statmt})? \\
\rightarrow \quad | \text{while} (\text{expr}) \text{statmt} \\
\rightarrow \quad | \{ \text{statmt}^* \} \\
\rightarrow \text{expr} ::= \text{intLiteral} | \text{ident} \\
\rightarrow \quad | \text{expr} (\&\& | < | == | + | - | * | / | %) \text{expr} \\
\rightarrow \quad | ! \text{expr} | - \text{expr}
```

Parse Tree vs Abstract Syntax Tree (AST)

\[
\text{while } (x > 0) \ x = x - 1
\]

Pretty printer: takes abstract syntax tree (AST) and outputs the leaves of one possible (concrete) parse tree.

\[
\text{parse(prettyPrint(ast)) } \approx \text{ ast}
\]
Parse Tree vs Abstract Syntax Tree (AST)

• Each node in parse tree has children corresponding precisely to right-hand side of grammar rules. The definition of parse trees is fixed given the grammar
 - Often compiler never actually builds parse trees in memory, (but in our labs we will have explicit parse trees)

• Nodes in abstract syntax tree (AST) contain only useful information and usually omit the punctuation signs. We can choose our own syntax trees, to make it convenient for both construction in parsing and for later stages of our compiler or interpreter
 - A compiler often directly builds AST
Abstract Syntax Trees for Statements

grammar:

```plaintext
statmt ::= println ( stringConst , ident )
         | ident = expr
         | if ( expr ) statmt (else statmt)?
         | while ( expr ) statmt
         | { statmt* }
```

AST classes:

```scala
abstract class Statmt

case class PrintlnS(msg : String, var : Identifier) extends Statmt

case class Assignment(left : Identifier, right : Expr) extends Statmt

case class If(cond : Expr, trueBr : Statmt, falseBr : Option[Statmt]) extends Statmt

case class While(cond : Expr, body : Expr) extends Statmt

case class Block(sts : List[Statmt]) extends Statmt
```
Abstract Syntax Trees for Statements

```plaintext
statmt ::= println ( stringConst , ident )
| ident = expr
| if ( expr ) statmt (else statmt)?
| while ( expr ) statmt
| { statmt* }
```

```plaintext
abstract class Statmt
case class PrintlnS(msg : String, var : Identifier) extends Statmt
case class Assignment(left : Identifier, right : Expr) extends Statmt
case class If(cond : Expr, trueBr : Statmt, falseBr : Option[Statmt]) extends Statmt
case class While(cond : Expr, body : Statmt) extends Statmt
case class Block(sts : List[Statmt]) extends Statmt
```
While Language with Simple Expressions

\[
\text{expr ::= intLiteral | ident } \\
| \text{expr} (+ | /) \text{expr} \\
\]

\[
\text{statmt ::= println (stringConst , ident) } \\
| \text{ident} = \text{expr} \\
| \text{if (expr) statmt (else statmt)?} \\
| \text{while (expr) statmt} \\
| \{ \text{statmt* } \} \\
\]
Abstract Syntax Trees for Expressions

\[\text{expr ::= intLiteral | ident} \]
\[\text{ | expr + expr | expr / expr} \]

abstract class Expr

case class IntLiteral(x : Int) extends Expr

case class Variable(id : Identifier) extends Expr

case class Plus(e1 : Expr, e2 : Expr) extends Expr

case class Divide(e1 : Expr, e2 : Expr) extends Expr

expr :+ intLiteral | ident
| expr + expr | expr / expr

foo + 42 / bar + arg
Ambiguous Grammars

\[
\text{expr ::= intLiteral | ident } \\
| \text{expr + expr | expr / expr}
\]

ident + intLiteral / ident + ident

Each node in parse tree is given by one grammar alternative.

Ambiguous grammar: if some token sequence has \textbf{multiple parse trees} (then it is has multiple abstract trees).
Making Grammar Unambiguous and Constructing Correct Trees

Introduction to LL(1) Parsing
Ambiguous Expression Grammar

```
expr ::= intLiteral | ident
    | expr + expr | expr / expr
```

Example input:

```
ident + intLiteral / ident
```

has two parse trees, one suggested by

```
ident  +    intLiteral / ident
```

and one by

```
ident + intLiteral    /    ident
```
Suppose Division Binds Stronger

\[
expr ::= \text{intLiteral} \mid \text{ident}
\]
\[
\mid expr + expr \mid expr / expr
\]

Example input:

\text{ident + intLiteral} / \text{ident}

has two parse trees, one suggested by

\text{ident} + \text{intLiteral} / \text{ident}

and one by a bad tree

\text{ident + intLiteral} \quad / \quad \text{ident}

We do not want arguments of / expanding into expressions with + as the top level.
Layering the Grammar by Priorities

\[\text{expr ::= intLiteral | ident} \]
\[\quad | \text{expr + expr} \mid \text{expr} / \text{expr} \]

is transformed into a new grammar:

\[\text{expr ::= expr + expr | divExpr} \]
\[\text{divExpr ::= intLiteral | ident} \]
\[\quad | \text{divExpr} / \text{divExpr} \]

The bad tree

\[\text{ident + intLiteral} \mid \text{ident} \]

cannot be derived in the new grammar.

New grammar: same language, fewer parse trees!
Left Associativity of /

\[
\text{expr ::= expr + expr } \mid \text{divExpr}
\]
\[
\text{divExpr ::= intLiteral } \mid \text{ident}
\mid \text{divExpr / divExpr}
\]

Example input:

\[
\text{ident / intLiteral / ident} \quad x/9/z
\]

has two parse trees, one suggested by

\[
\text{ident / intLiteral } / \text{ident} \quad (x/9)/z
\]

and one by a bad tree

\[
\text{ident / intLiteral / ident} \quad x/(9/z)
\]

We do not want RIGHT argument of / expanding into expression with / as the top level.
Left Associativity - Left Recursion

\[
\begin{align*}
\text{expr} & ::= \text{expr} + \text{expr} \mid \text{divExpr} \\
\text{divExpr} & ::= \text{intLiteral} \mid \text{ident} \mid \text{divExpr} / \text{divExpr}
\end{align*}
\]

\[
\begin{align*}
\text{expr} & ::= \text{expr} + \text{expr} \mid \text{divExpr} \\
\text{divExpr} & ::= \text{divExpr} / \text{factor} \mid \text{factor}
\end{align*}
\]

\[
\begin{align*}
\text{factor} & ::= \text{intLiteral} \mid \text{ident}
\end{align*}
\]

No bad / trees
Still bad + trees

No bad trees.
Left recursive!
Left vs Right Associativity

<table>
<thead>
<tr>
<th>Grammar</th>
<th>Left associative</th>
<th>Right recursive, so not LL(1).</th>
</tr>
</thead>
<tbody>
<tr>
<td>`expr ::= expr + divExpr</td>
<td>divExpr`</td>
<td>Unique trees.</td>
</tr>
<tr>
<td>`divExpr ::= factor</td>
<td>divExpr / factor`</td>
<td>Associativity wrong.</td>
</tr>
<tr>
<td>`factor ::= intLiteral</td>
<td>ident`</td>
<td>No left recursion.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Grammar</th>
<th>Unique trees.</th>
<th>Associativity wrong.</th>
<th>LL(1): easy to pick an alternative to use.</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>expr ::= divExpr exprSeq</code></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>`exprSeq ::= + expr</td>
<td>ε`</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>divExpr ::= factor divExprSeq</code></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>`divExprSeq ::= / divExpr</td>
<td>ε`</td>
<td></td>
<td></td>
</tr>
<tr>
<td>`factor ::= intLiteral</td>
<td>ident`</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Our Approach

\[
expr ::= \text{intLiteral} \mid \text{ident} \\
\quad \mid expr + expr \mid expr / expr
\]

\[
expr ::= \text{divExpr} exprSeq \\
exprSeq ::= + expr \mid \varepsilon \\
divExpr ::= \text{factor} \text{divExprSeq} \\
divExprSeq ::= / \text{divExpr} \mid \varepsilon \\
factor ::= \text{intLiteral} \mid \text{ident}
\]

initial grammar, priorities: \(/ \) +

LL(1) grammar encoding priorities

change right into left associativity, abstract

tokens from lexer

LL(1) parser

parse tree, all right associative

AST
Approach on an Example

\[\text{expr ::= divExpr exprSeq} \]
\[\text{exprSeq ::= + expr | ϵ} \]
\[\text{divExpr ::= factor divExprSeq} \]
\[\text{divExprSeq ::= / divExpr | ϵ} \]
\[\text{factor ::= a | b | c | d} \]

LL(1) grammar
encoding priorities

change right into left
associativity, abstract

LL(1) parser

tokens from lexer

\[a + b / c + d \]

parse tree, all right associative

AST
Right Associative Parse Trees into Left Associative Abstract Syntax Tree

expr
divExpr
factor divExprSeq + expr
a

divExpr
factor divExprSeq
b
/
divExpr
defactor divExprSeq
c
+
eq

exprSeq
divExpr
defactor divExprSeq

+ + +
d
a
b
c
a
b

left associative
right associative
easy,
wrong
correct
Exercise: Unary Minus

1) Show that the grammar

\[
\begin{align*}
A &::= - A \\
A &::= A - id \\
A &::= id
\end{align*}
\]

is ambiguous by finding a string that has two different parse trees. Show those parse trees.

2) Make two different unambiguous grammars for the same language:
 a) One where prefix minus binds stronger than infix minus.
 b) One where infix minus binds stronger than prefix minus.

3) Show the syntax trees using the new grammars for the string you used to prove the original grammar ambiguous.

4) Give a regular expression describing the same language.
Unary Minus Solution Sketch

1) An example of a string with two parse trees is

 `- id - id`

The two parse trees are generated by these imaginary parentheses (shown red):

 `-(id-id) (-id)-id`

and can generated by these derivations that give different parse trees

 A => -A => - A - id => - id - id
 A => A - id => - A - id => - id - id

2) a) prefix minus binds stronger:

 A ::= B | A - id B ::= -B | id

 b) infix minus binds stronger

 A ::= C | -A C ::= id | C - id

3) in two trees that used to be ambiguous instead of some A's we have B's in
 a) grammar or C's in b) grammar.

4) `-*id(-id)*`