Automating Construction of Lexers by converting Regular Expressions to Automata

Regular Expression to Programs

- How can we write a lexer that has these two classes of tokens: $\{a_1, b_2\}$
 - a*b
 - aaa
- Consider run of lexer on: **aaaab** and on: **aaaaaa**

Regular Expression to Programs

- How can we write a lexer that has these two classes of tokens:
 - a*b
 - aaa
- Consider run of lexer on: **aaaab** and on: **aaaaaa**
- A general approach:

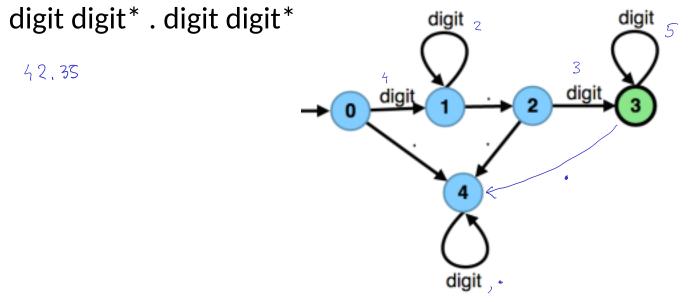
Finite Automaton (Finite State Machine)

A = (Σ,	Q, q ₀ ,	δ, F
b		a b
()		()
	a	X
→ 0-		U

$\delta \subseteq Q \times \Sigma \times Q,$
$q_0 \in Q$,
$F \subseteq Q$
$q_0 \in Q$
$q_1 \subseteq Q$
$\delta = \{ (q_0, a, q_1), (q_0, b, q_0), \}$
$(q_1, a, q_1), (q_1, b, q_1), \}$

- Σ alphabet = $\{ \mathfrak{Q}_1 \mathfrak{b} \}$
- Q states (nodes in the graph)
- q₀ initial state (with '->' sign in drawing)
- δ transitions (labeled edges in the graph)
- F final states (double circles)

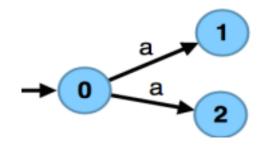
Numbers with Decimal Point



What if the decimal part is optional?

Kinds of Finite State Automata

- DFA: δ is a function : $(Q, \Sigma) \mapsto Q$
- •NFA: δ could be a relation
- •In NFA there is no unique next state. We have a set of possible next states.



Remark: Relations and Functions

- Relation r ⊆ B x C
 r = { ..., (b,c1) , (b,c2) ,... }
- Corresponding function: f : B -> 2^c

₽(c)

f = { ... (b,{c1,c2}) ... }

 $f(b) = \{ c \mid (b,c) \in r \}$

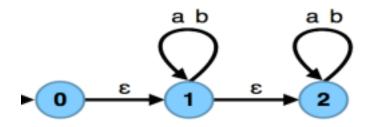
 Given a state, next-state function returns a set of new states

for deterministic automaton, set has exactly 1 element

Allowing Undefined Transitions

• Undefined transitions are equivalent to transition into a sink state (from which one cannot recover)

Allowing Epsilon Transitions



• Epsilon transitions:

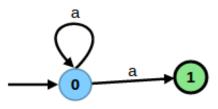
-traversing them does not consume anything

• Transitions labeled by a word:

-traversing them consumes the entire word

When Automaton Accepts a Word

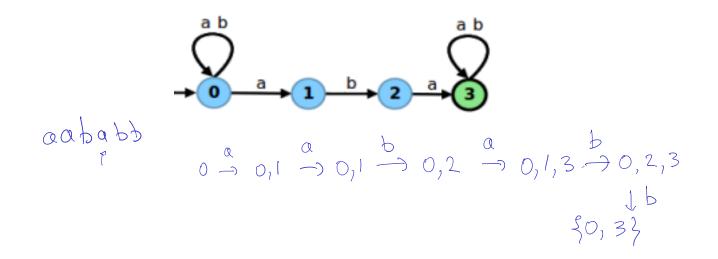
Automaton accepts a word w iff there **exists a path** in the automaton from the starting state to <u>some</u> accepting state such that concatenation of words on the path gives w.



• Does the automaton accept the word *a* ?

Exercise

 Construct a NFA that recognizes all strings over {a,b} that contain "aba" as a substring



Running NFA (without epsilons)

```
def δ(a : Char)(q : State) : Set[States] = { ... }
def δ'(a : Char, S : Set[States]) : Set[States] = {
  for (q1 <- S, q2 <- δ(a)(q1)) yield q2 // S.flatMap(δ(a))
}
def accepts(input : MyStream[Char]) : Boolean = {
  var S : Set[State] = Set(q0) // current set of states
  while (!input.EOF) {
    val a = input.current
    S = δ'(a,S) // next set of states
  }
  !(S.intersect(finalStates).isEmpty)
}</pre>
```

NFA Vs DFA

- Every DFA is also a NFA (they are a special case)
- For every NFA there exists an equivalent DFA that accepts the same set of strings
- But, NFAs could be exponentially smaller (succinct)
- There are NFAs such that **every** DFA equivalent to it has exponentially more number of states

Regular Expressions and Automata

Theorem:

Let L be a language. There exists a regular expression that describes it if and only if there exists a finite automaton that accepts it.

((ab* | a*)* | bb)a

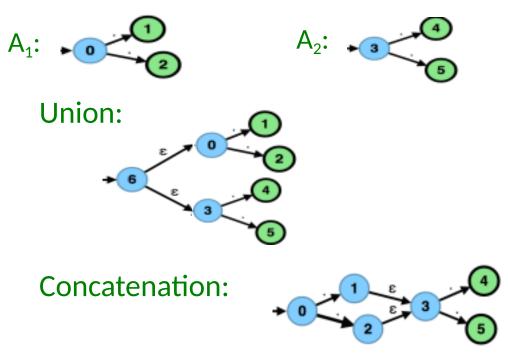
Algorithms:

• regular expression \rightarrow automaton (important!)

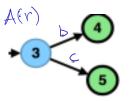
• automaton \rightarrow regular expression (cool)

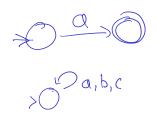
(* × 1

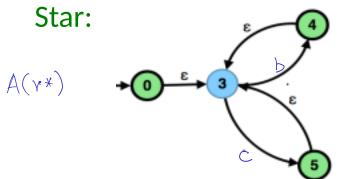
Recursive Constructions



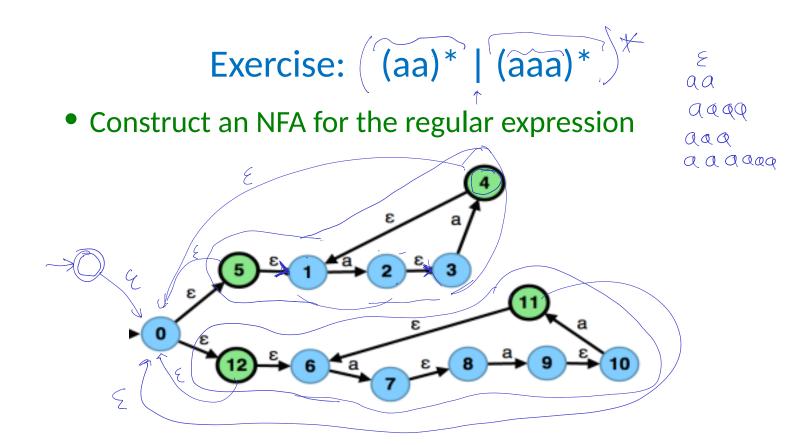
Recursive Constructions







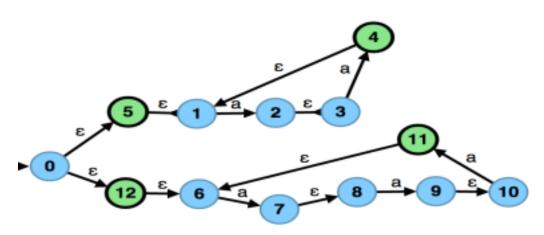
(b(c)*



NFAs to DFAs (Determinization)

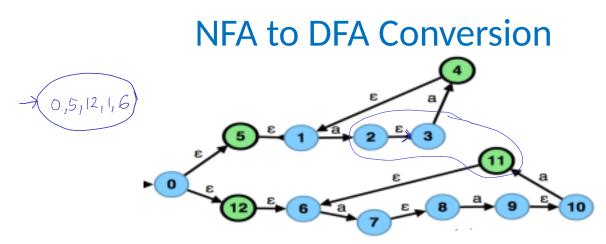
- keep track of a set of all possible states in which the automaton could be
- view this finite set as one state of new automaton

NFA to DFA Conversion



Possible states of the DFA: 2^{Q}

 $\left\{ \ \left\{ \ \right\}, \ \left\{ \ 0 \right\}, \ldots \left\{ 12 \right\}, \ \left\{ 0,1 \right\}, \ \ldots, \left\{ 0,12 \right\}, \ \ldots, \left\{ 12, \ 12 \right\}, \\ \left\{ 0,1,2 \right\} \ \ldots, \ \left\{ \ 0,1,2 \ldots, 12 \right\} \right\}$

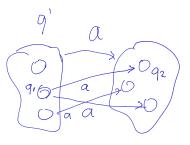


Epsilon Closure

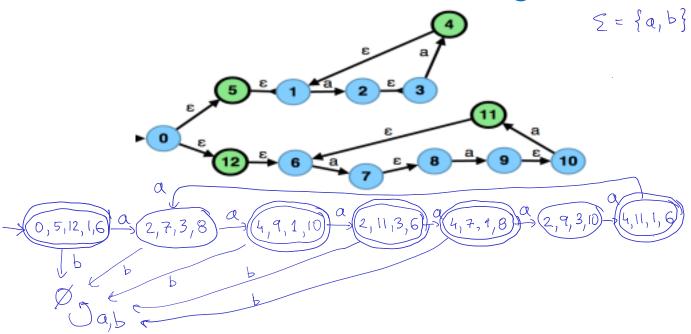
-All states reachable from a state through epsilon - $q \in E(q)$ - If $q_1 \in E(q)$ and $\delta(q_1, \epsilon, q_2)$ then $q_2 \in E(q)$ E(0) = $\{0, 5, 12, 5\}$ E(1) = $\{1\}$ E(2) = $\{2, 3\}$

NFA to DFA Conversion $(\mathcal{E}, Q, \mathcal{F}, F)$

- DFA: $(\Sigma, 2^Q, q'_0, \delta', F')$
- $\bullet q_0' = E(q_0)$
- $\bullet \delta'(q', \underline{a}) = \bigcup_{\{\exists q_1 \in q', \delta(q_1, a, q_2)\}} \underline{E(q_2)}$
- • $F' = \{ q' | q' \in 2^Q, q' \cap F \neq \emptyset \}$ $q' \subseteq \mathbb{Q}$



NFA to DFA Conversion through Examle



Clarifications

- what happens if a transition on an alphabet 'a' is not defined for a state 'q' ?
- $\delta'(\{q\}, a) = \emptyset$
- $\delta'(\emptyset, a) = \emptyset$
- Empty set represents a state in the NFA
- It is a trap/sink state: a state that has selfloops for all symbols, and is non-accepting.