
Automating Construction of Lexers

by converting

Regular Expressions to Automata

Regular Expression to Programs

• How can we write a lexer that has these two classes

of tokens:

– a*b

– aaa

• Consider run of lexer on: aaaab and on: aaaaaa

Regular Expression to Programs

• How can we write a lexer that has these two classes

of tokens:

– a*b

– aaa

• Consider run of lexer on: aaaab and on: aaaaaa

• A general approach:

Regular

Expression
Finite Automaton Program

Finite Automaton (Finite State Machine)

A = (Σ, Q, q0, δ, F)

• Σ - alphabet

• Q - states (nodes in the graph)

• q0 - initial state (with ‘->' sign in drawing)

• δ - transitions (labeled edges in the graph)

• F - final states (double circles)

Numbers with Decimal Point

digit digit* . digit digit*

What if the decimal part is optional?

•DFA: is a function :

•NFA: could be a relation

•In NFA there is no unique next state. We have a set of

possible next states.

Kinds of Finite State Automata

Remark: Relations and Functions

• Relation r B x C⊆

r = { ..., (b,c1) , (b,c2) ,... }

• Corresponding function: f : B -> 2C

f = { ... (b,{c1,c2}) ... }

 f(b) = { c | (b,c) r }∈

• Given a state, next-state function returns a set of

new states

for deterministic automaton, set has exactly 1 element

Allowing Undefined Transitions

• Undefined transitions are equivalent to transition

into a sink state (from which one cannot recover)

Allowing Epsilon Transitions

• Epsilon transitions:
–traversing them does not consume anything

• Transitions labeled by a word:

–traversing them consumes the entire word

When Automaton Accepts a Word

Automaton accepts a word w iff there exists a path in the

automaton from the starting state to some accepting state

such that concatenation of words on the path gives w.

• Does the automaton accept the word a ?

Exercise

• Construct a NFA that recognizes all strings over {a,b} that contain

"aba" as a substring

Running NFA (without epsilons)
def δ(a : Char)(q : State) : Set[States] = { ... }

def δ'(a : Char, S : Set[States]) : Set[States] = {

 for (q1 <- S, q2 <- δ(a)(q1)) yield q2 // S.flatMap(δ(a))

}

def accepts(input : MyStream[Char]) : Boolean = {

 var S : Set[State] = Set(q0) // current set of states

 while (!input.EOF) {

 val a = input.current

 S = δ'(a,S) // next set of states

 }

 !(S.intersect(finalStates).isEmpty)

}

NFA Vs DFA

• Every DFA is also a NFA (they are a special case)

• For every NFA there exists an equivalent DFA that accepts

the same set of strings

• But, NFAs could be exponentially smaller (succinct)

• There are NFAs such that every DFA equivalent to it has

exponentially more number of states

Regular Expressions and Automata

Theorem:

Let L be a language. There exists a regular expression

that describes it if and only if there exists a finite

automaton that accepts it.

Algorithms:

• regular expression → automaton (important!)

• automaton → regular expression (cool)

A1:

Recursive Constructions

Union:

Concatenation:

A2:

Recursive Constructions

Star:

Exercise: (aa)* | (aaa)*

• Construct an NFA for the regular expression

NFAs to DFAs (Determinization)

• keep track of a set of all possible states in which the

automaton could be

• view this finite set as one state of new automaton

NFA to DFA Conversion

NFA to DFA Conversion

NFA to DFA Conversion

•DFA:

NFA to DFA Conversion through Examle

Clarifications

