Automating Construction of Lexers

by converting
Regular Expressions to Automata

Regular Expression to Programs

* How can we write a lexer that has these two classes
of tokens: sa,b?

- a*b
- aaa

® Consider run of lexer on: aaaab and on: aaaaaa
X

Regular Expression to Programs

* How can we write a lexer that has these two classes
of tokens:

- a*b

- aaa
® Consider run of lexer on: aaaab and on: aaaaaa
* A general approach:

Reg“'?‘r —| Finite Automaton [~ Program
Expression

Finite Automaton (Finite State Machine)

A=(2,Q,0,0 F) 6 <ce@xzxq,
b ab CIOEQ;

akb FcQ
Ty : ' do € Q

—0——Q % < Q

_ 7= § = {(q0,a,q1),(qo, b, q0),
2 - alphabet = §q b} (o 3 (b)}
* Q - states (nodes in the graph) 41,4 41, L4102, 415

* q, - initial state (with *->' sign in drawing)

0 - transitions (labeled edges in the graph)
F - final states (double circles)

Numbers with Decimal Point
digit digit* . digit digit* digit

Lh2.%5

digit | -
What if the decimal part is optional?

Kinds of Finite State Automata

eDFA: d is a function : (Q,X) —» Q
eNFA: O could be a relation

eIn NFA there is no unique next state. We have a set
of possible next states.

Remark: Relations and Functions

® Relation r€BxC
r={...,(b,c1), (b,c2),...}
® Corresponding function: f: B -> 2¢
f={...(b{c1,c2}) ...}
f(b)={c | (b,c) Er}
® Given a state, next-state function returns a set of

new states
for deterministic automaton, set has exactly 1 element

(<)

Allowing Undefined Transitions

e O
® Undefined transitions are equivalent to transition
into a sink state (from which one cannot recover)

Allowing Epsilon Transitions

ab ab

PRSI

® Epsilon transitions:
~traversing them does not consume anything

® Transitions labeled by a word:
—traversing them consumes the entire word

When Automaton Accepts a Word

Automaton accepts a word w iff there exists a path in the
automaton from the starting state to some accepting state
such that concatenation of words on the path gives w.

a
—_—
0

® Does the automaton accept the word a ?

Exercise

Construct a NFA that recognizes all strings over {a,b} that contain
"aba" as a substring

ab ab
_’8 a O" b@ a8
&&303\99) R " “ b

b
30, 3

Running NFA (without epsilons)

def 6(a: Char)(q : State) : Set[States] ={ ... }
def &'(a: Char, S : Set[States]) : Set[States] = {

for (1 <- S, g2 <- 6(a)(q1)) yield g2 // S.flatMap(&(a))
}

def accepts(input : MyStream[Char]) : Boolean = {

var S : Set[State] = Set(q0) // current set of states
while (linput.EOF) {

val a = input.current

S=6'(a,S) // next set of states

}
I(S.intersect(finalStates).isEmpty)

}

NFA Vs DFA

Every DFA is also a NFA (they are a special case)

For every NFA there exists an equivalent DFA that accepts
the same set of strings

But, NFAs could be exponentially smaller (succinct)

There are NFAs such that every DFA equivalent to it has
exponentially more number of states

Regular Expressions and Automata

Theorem:

Let L be a language. There exists a regular expression
that describes it if and only if there exists a finite
automaton that accepts it.

((ab*lax) [bb)a
Algorithms: ‘ N
® regular expression = automaton (important!)
® automaton — regular expression (cool)

Recursive Constructions

FO NP ©
oo 2»(~

Union: Yo

< >
@
O

Concatenation: S e

Recursive Constructions

Al - (@)
o ¢ %437(%

ble

Da,b,c
>O

. a
Exercise: (K(\é/é)/\ | W

.
® Construct an NFA for the regular expression

&
aa
A@aQ

aax
a 0. adaq

NFAs to DFAs (Determinization)

® keep track of a set of all possible states in which the
automaton could be

® view this finite set as one state of new automaton

NFA to DFA Conversion

Possible states of the DFA: 2@

},{0},...{12}, {O,1}, ...,{O0,12}, ...{12, 12},
1,

{{
{0,1,2} ..., {0,1,2...,12 }}

NFA to DFA Conversion

Epsilon Closure
—All states reachable from a state through epsilon
-q € E(q)
-1f g1 € E(q) and 6(q4, €, q2) then q, € E(q)
E(0)={fs2d E(1)={:} E(2)={s

NFA to DFA Conversion
(8,9, F)

*DFA: (2,29,q5,8',F") " a

~
*qo = E(qo) fid

’5,(61,, {’_l) - U{3Q1ECI', §(q1,a,92)} EHEEIE)

oF'={q'lg" €2°,q' NF = @}
q' € QL

NFA to DFA Conversion through Examle

Clarifications

what happens if a transition on an alphabet ‘@’
is not defined for a state ‘q’ ?

5'({q},a) =0
6'(@,a) =0

Empty set represents a state in the NFA

It is a trap/sink state: a state that has self-
loops for all symbols, and is non-accepting.

