CS-320
Computer Language Processing

Exercise Session 1

October 4, 2018



Overview

We will talk about and do exercises on the following topics:

—_

. Regular languages,

2. Finite state machines,

3. how to determinize them, and
4

. how to minimize them.



Regular languages

Alphabet ¥ is a set of symbols {a, b, c,...}.
A word w is a sequence of symbols s; € ¥.
We denote the empty word by e.

A language L is a set of words.



Operations on regular languages

We define several operations on regular languages:
» Concatenation L - Ly,
» Union L1 U Ly, and

» Kleene closure L*.

Other operations such as -7, -7 can be expressed using the above.



Finite-state automata

A deterministic finite-state automaton (DFA) is defined by a
quintuple (¥, Q, so, 9, F) where

» Y is a (finite) set of symbols called the alphabet,

Q is the finite set of states,

sp € Q is the initial state,

d:(Q x X)— Q is called the transition function, and

v

v

v

» £ C Q is the set of accepting states.

For nondeterministic finite-state automatons (NFAs) ¢ is not
necessarily a function, i.e., in general we only have § C Q@ x X X Q.



A simple regular language

Exercise 1

> Find a finite-state automaton that accepts the language given by
(alb)*.



A simple regular language

Exercise 1

> Find a finite-state automaton that accepts the language given by
(alb)*.

a,b
avb
start H‘%



Even binary numbers

Exercise 2

> Find a finite-state automaton that accepts the even binary
numbers (e.g., 0, 10, 100, 110, ...).



Even binary numbers

Exercise 2

> Find a finite-state automaton that accepts the even binary
numbers (e.g., 0, 10, 100, 110, ...).

1 0
0

start H

1



Binary numbers divisible by three

Exercise 3

> Find a finite-state automaton that accepts all binary numbers
divisible by three.



Binary numbers divisible by three

Exercise 3

> Find a finite-state automaton that accepts all binary numbers
divisible by three.

1

0
start H @
1 0



All but one

Exercise 4

> Find a regular expression that describes the language of all words
over alphabet {a, b, ¢} which contain at most two of the three
symbols (e.g., a, acac, ccccbbbbbb, .. .).



All but one

Exercise 4

> Find a regular expression that describes the language of all words
over alphabet {a, b, ¢} which contain at most two of the three
symbols (e.g., a, acac, ccccbbbbbb, .. .).

(alp)[(ale)[(b]c)



All but one

Exercise 4

> Find a regular expression that describes the language of all words
over alphabet {a, b, ¢} which contain at most two of the three
symbols (e.g., a, acac, ccccbbbbbb, .. .).

(alp)[(ale)[(b]c)

> Find an NFA which accepts the language.



All but one: NFA

Exercise 4

(alb)"[(alc) | (b]c)

start — c a,c



All but one: NFA

Exercise 4

(alb)"[(alc) | (b]c)

)

start — c a,c

> What does an equivalent DFA look like?



Recap: Determinization

For each NFA (X, Q, qo, 0, F) there is
an equivalent DFA (¥,29 g}, &', F') with

0 = E(qo),
§(q,a)= |J E(d(q1,a)), and
dq1€q’

F'={q|q €2°ng' nF+0}.



Recap: Determinization

For each NFA (X, Q, qo, 0, F) there is
an equivalent DFA (¥,29 g}, &', F') with

0 = E(qo),
§(q,a)= |J E(d(q1,a)), and
dq1€q’

FF={q|qdec22ng NF#0}.
Note that for undefined transitions on symbol a in state g we get
d'({q},a) =0
and similarly for the trap state () we get

5'(0,a) = 0.



All but one: DFA

Exercise 4

start —




All but one: DFA

Exercise 4

start —

> What is the significance of the intermediate states?



Minimization

We can minimize DFAs by collapsing equivalent states.

We will consider two states s; and s, equivalent, if they are
indistinguishable wrt. acceptance.

That is, s1 is equivalent to sy, if, for any word w, following the
automaton’s transitions from state s;, respectively s, we end up in
two accepting or two rejecting states.



Minimization

One simple algorithm for minimizing DFAs:

Use a table (with one column and one row per state) to gradually
mark all non-equivalent pairs of states.

1. Initialize the table by marking all pairs of states where one is
accepting and the other is not.

2. For every symbol a and for every pair of states s; and sp,
mark the pair, if d(s1, a) is not equivalent to d(sp, a).

3. Repeat the second step until no more additional
non-equivalent pairs are found.



Minimization

Exercise 5

> Minimize the following DFA.

qi1

()
g3 a,b

a
b

start% a,b
b b
o)
a

—®



Minimization

Exercise 5

Minimized:

a,b



