
CS-320
Computer Language Processing

Exercise Session 1

October 4, 2018

Overview

We will talk about and do exercises on the following topics:
1. Regular languages,
2. Finite state machines,
3. how to determinize them, and
4. how to minimize them.

Regular languages

Alphabet Σ is a set of symbols {a, b, c, . . . }.

A word w is a sequence of symbols si ∈ Σ.

We denote the empty word by ε.

A language L is a set of words.

Operations on regular languages

We define several operations on regular languages:
I Concatenation L1 · L2,
I Union L1 ∪ L2, and
I Kleene closure L∗.

Other operations such as ·+, ·? can be expressed using the above.

Finite-state automata

A deterministic finite-state automaton (DFA) is defined by a
quintuple 〈Σ,Q, s0, δ,F 〉 where

I Σ is a (finite) set of symbols called the alphabet,
I Q is the finite set of states,
I s0 ∈ Q is the initial state,
I δ : (Q × Σ)→ Q is called the transition function, and
I F ⊆ Q is the set of accepting states.

For nondeterministic finite-state automatons (NFAs) δ is not
necessarily a function, i.e., in general we only have δ ⊆ Q ×Σ×Q.

A simple regular language
Exercise 1

. Find a finite-state automaton that accepts the language given by
(a | b)+.

q0start q1
a,b

a,b

A simple regular language
Exercise 1

. Find a finite-state automaton that accepts the language given by
(a | b)+.

q0start q1
a,b

a,b

Even binary numbers
Exercise 2

. Find a finite-state automaton that accepts the even binary
numbers (e.g., 0, 10, 100, 110, . . .).

q0start q1

0
1

1

0

Even binary numbers
Exercise 2

. Find a finite-state automaton that accepts the even binary
numbers (e.g., 0, 10, 100, 110, . . .).

q0start q1

0
1

1

0

Binary numbers divisible by three
Exercise 3

. Find a finite-state automaton that accepts all binary numbers
divisible by three.

q0start q1 q2

1
0

0

1 0

1

Binary numbers divisible by three
Exercise 3

. Find a finite-state automaton that accepts all binary numbers
divisible by three.

q0start q1 q2

1
0

0

1 0

1

All but one
Exercise 4

. Find a regular expression that describes the language of all words
over alphabet {a, b, c} which contain at most two of the three
symbols (e.g., a, acac, ccccbbbbbb, . . .).

(a | b)∗ | (a | c)∗ | (b | c)∗

. Find an NFA which accepts the language.

All but one
Exercise 4

. Find a regular expression that describes the language of all words
over alphabet {a, b, c} which contain at most two of the three
symbols (e.g., a, acac, ccccbbbbbb, . . .).

(a | b)∗ | (a | c)∗ | (b | c)∗

. Find an NFA which accepts the language.

All but one
Exercise 4

. Find a regular expression that describes the language of all words
over alphabet {a, b, c} which contain at most two of the three
symbols (e.g., a, acac, ccccbbbbbb, . . .).

(a | b)∗ | (a | c)∗ | (b | c)∗

. Find an NFA which accepts the language.

All but one: NFA
Exercise 4

(a | b)∗ | (a | c)∗ | (b | c)∗

m

0start

1

2

3

ε

ε

ε

a,b

a,c

b,c

. What does an equivalent DFA look like?

All but one: NFA
Exercise 4

(a | b)∗ | (a | c)∗ | (b | c)∗

m

0start

1

2

3

ε

ε

ε

a,b

a,c

b,c

. What does an equivalent DFA look like?

Recap: Determinization
For each NFA 〈Σ,Q, q0, δ,F 〉 there is
an equivalent DFA 〈Σ, 2Q, q′0, δ′,F ′〉 with

q′0 = E (q0),
δ′(q′, a) =

⋃
∃q1∈q′

E (δ(q1, a)), and

F ′ = {q′ | q′ ∈ 2Q ∧ q′ ∩ F 6= ∅}.

Note that for undefined transitions on symbol a in state q we get

δ′({q}, a) = ∅,

and similarly for the trap state ∅ we get

δ′(∅, a) = ∅.

Recap: Determinization
For each NFA 〈Σ,Q, q0, δ,F 〉 there is
an equivalent DFA 〈Σ, 2Q, q′0, δ′,F ′〉 with

q′0 = E (q0),
δ′(q′, a) =

⋃
∃q1∈q′

E (δ(q1, a)), and

F ′ = {q′ | q′ ∈ 2Q ∧ q′ ∩ F 6= ∅}.

Note that for undefined transitions on symbol a in state q we get

δ′({q}, a) = ∅,

and similarly for the trap state ∅ we get

δ′(∅, a) = ∅.

All but one: DFA
Exercise 4

{0, 1, 2, 3}start

{1, 2}

{1, 3}

{2, 3}

{1}

{2}

{3}

∅

a

b

c

a

b

cb

a

c

c

a

b

a,b

ca,c

b

b,c

a

a,b,c

. What is the significance of the intermediate states?

All but one: DFA
Exercise 4

{0, 1, 2, 3}start

{1, 2}

{1, 3}

{2, 3}

{1}

{2}

{3}

∅

a

b

c

a

b

cb

a

c

c

a

b

a,b

ca,c

b

b,c

a

a,b,c

. What is the significance of the intermediate states?

Minimization

We can minimize DFAs by collapsing equivalent states.

We will consider two states s1 and s2 equivalent, if they are
indistinguishable wrt. acceptance.

That is, s1 is equivalent to s2, if, for any word w , following the
automaton’s transitions from state s1, respectively s2, we end up in
two accepting or two rejecting states.

Minimization

One simple algorithm for minimizing DFAs:

Use a table (with one column and one row per state) to gradually
mark all non-equivalent pairs of states.

1. Initialize the table by marking all pairs of states where one is
accepting and the other is not.

2. For every symbol a and for every pair of states s1 and s2,
mark the pair, if δ(s1, a) is not equivalent to δ(s2, a).

3. Repeat the second step until no more additional
non-equivalent pairs are found.

Minimization
Exercise 5

. Minimize the following DFA.

q0start

q1

q4

q2 q3

q5 q6

a

b

a

b

a,b
a,b

a,b

a
b

a

b

Minimization
Exercise 5

Minimized:

q0start

q{1,6}

q4

q{2,3}

q5

a

b

a

b
a,b

a,ba

b

