
Computer Language Processing - Exercise Session 5 - 2018

Exercise 1
Consider the typing rules in annex. Assuming an empty initial environment, type check the
following expressions. Write down the derivation trees.

3 + 5

val x: Int = 4; val y: Int = x + x; x * y

Assuming that the initial environment is {(x, Boolean), (power, (Int, Int) => Int)},
type check the following expressions. Write down the derivation trees.

val x: Int = 7; if (x < 100) power(x, 10) else error("Too big!")

val x: Int = if (x) 1 else 0; x * 2

Exercise 2
In this exercise, we will extend our language with constructs to create and manipulate
sequences. First of all, we add types to represent sequences. For every type T, we introduce
the type Seq[T] which represents sequences of values of type T. We then add syntax to
represent sequences. The syntax for literal sequences is given by the regular expression
[(Expr (, Expr)*)?]. For instance, the following are syntactically valid sequences:

[]

[1, 2, 3, 4]

[val x = 2; x, 1; 2; if (true) 42 else 17 + 3]

[1, true, x, ()]

We will use the binary operator ++ to represent concatenation of sequences (in addition to
string concatenation). We also introduce two additional constructs: atIndex and indexOf.

1. atIndex takes as arguments a sequence and an index (an Int), and returns the
value stored in the sequence at the specified index. It is unspecified what happens
when the index is out of bounds (potentially a runtime crash).

2. indexOf takes two arguments and returns the index at which the second argument
appears in the first. The first argument should be a sequence and the second a value
of the appropriate type. The value returned will always be an Int (-1 will be returned
when the sequence doesn’t contains the requested value).

Computer Language Processing - Exercise Session 5 - 2018

Question 1
Write the typing rules for sequence literals, concatenation of sequences, atIndex and
indexOf.

Question 2
Assuming an empty initial environment, type check the following expressions:

atIndex([1, 2, 3], 1) == 2

[1, 2, true]

val x: Boolean = true; [x, false, x]

atIndex([] ++ [], 0)

Is there something particular with the last example ?

Question 3
Being a huge fan of Scala, you decide to introduce for-comprehensions to your language.
For-comprehensions are expressions of the form:

for { x1 <- xs1; x2 <- xs2; …; xn <- xsn } yield e

Where x1, x2, …, xn are variables, xs1, xs2, …, xsn are expressions and e is an expression.
The meaning of such expressions is the same as in Scala. Note that variables bound in
earlier bindings can appear in subsequent bindings. For instance, the following should be
valid for-comprehension expressions:

for {

 x <- [1, 2]

} yield x + 1

for {

 x <- [1, 2, 3];

 y <- [x > 1, false];

 z <- [x, if (y) 1 else 0]

} yield x + z

Your goal is to write down the typing rule(s) for for-comprehension expressions.

Computer Language Processing - Exercise Session 5 - 2018

