
Computer Language Processing

Quiz

Thursday, November 29, 2018

Read all questions and ask us for any clarifications as early as possible.

Unless specified, you do not need to justify your answers.

Write your answers using dark permanent pen directly on this exam sheet.

For multiple-choice questions, please circle only the letters corresponding to your choices, not

the text of choices themselves.

We will not grade any additional sheets.

Exercise Points Points Achieved

1 20

2 20

3 20

4 20

5 20

Total 100

This page intentionally left blank.

2

Exercise 1: Lexing (20 points)

Question 1.1

Circle all of the regular expressions whose language is disjoint from the language of (a|b)+c*:

A. a*b*c*

B. c+

C. (b|c)+

D. (a|b)+c+a+

Question 1.2

Consider the lexical analyzer with token classes defined by following regular expressions:

È Imp := =>,

LessEq := <=,

Less := <,

Greater := > Í

Circle all the correct statements amongst the ones below, assuming the longest match rule is applied:

A. <=> will be tokenized to Less, Imp.

B. <=< will be tokenized to LessEq, Less.

C. <==> will be tokenized to LessEq, Imp.

D. <> will be tokenized to Greater, Less.

3

Exercise 2: Grammars & Parsing (20 points)

Consider the following grammar:

ÈObjectÍ ::= ‘{’ ÈObjectRestÍ

ÈObjectRestÍ ::= ÈObjectContentÍ ‘}’ | ‘{’ ‘}’

ÈObjectContentÍ ::= STRING ‘:’ ÈValueÍ ÈObjectContentRepÍ

ÈObjectContentRepÍ ::= Á | ‘,’ ÈObjectContentÍ

ÈArrayÍ ::= ‘[’ ÈArrayRestÍ

ÈArrayRestÍ ::= ÈArrayContentÍ ‘]’ | ‘]’

ÈArrayContentÍ ::= ÈValueÍ ÈArrayContentRepÍ

ÈArrayContentRepÍ ::= Á | ‘,’ ÈArrayContentÍ

ÈValueÍ ::= ÈObjectÍ | ÈArrayÍ | STRING | ‘true’ | ‘false’

Note that we do not have an end-of-file marker in the above grammar. Do not add one to the grammar. Do
not assume such an implicit marker is present.

4

Question 2.1

Which of the following statements are true? Circle all correct answers. Hint: be bold!
A. STRING is a terminal.

B. ÈObjectÍ is a terminal.

C. ÈArrayContentÍ is a non-terminal.

D. ‘true’ is a terminal.

Question 2.2

Which of the following statements are true? Circle the correct answers.
A. ÈObjectContentÍ is nullable.

B. ÈArrayRestÍ is nullable.

C. ÈArrayContentRepÍ is nullable.

D. ÈValueÍ is nullable.

Question 2.3

Which of the following statements are true? Circle the correct answers.
A. First(ÈObjectContentÍ) contains ‘,’.

B. First(ÈObjectÍ) is disjoint from First(ÈArrayÍ).

C. First(ÈValueÍ) is a subset of First(ÈArrayÍ).

D. First(ÈArrayRestÍ) contains ‘[’.

Question 2.4

Which of the following statements are true? Circle the correct answers.
A. Follow(ÈObjectÍ) is empty.

B. Follow(ÈArrayContentÍ) is equal to {‘]’}.

C. Follow(ÈArrayRestÍ) contains ‘,’.

D. Follow(ÈValueÍ) contains ‘{’.

Question 2.5

Which of the following statements are true? Circle the correct answers.
A. The grammar is ambiguous.

B. The grammar is LL(1).

C. The grammar is in Chomsky normal form.

D. The language defined by the grammar is non-regular.

5

Exercise 3: Lú
Membership-Checking Algorithm (20 points)

Let L ™ A

ú be a language given by a (terminating) algorithm fL : A

ú æ {true, false} such that, for all
w œ A

ú,
(fL(w) = true) ≈∆ (w œ L)

In other words, fL checks whether a word belongs to L. (We do not have any other information about the
language L.)

Let S = L

ú.

Your goal

Write an algorithm fS using Scala-like notation to check if word belongs to S, that is, fS : A

ú æ {true, false}
such that

(fS(w) = true) ≈∆ (w œ S)
Your algorithm can inspect the word w as well as apply the function fL on arbitrary words. For full points,
your solutions should only invoke fL a polynomial (in the size of the input word) number of times. You may
use any auxiliary data structures from Scala library. For your convenience, a small API for List and Array

follows.

API

Methods of List[A]

• def apply(n: Int): A: Returns the n

th element of this list.

• def take(n: Int): List[A]: Returns first n elements of this list.

• def drop(n: Int): List[A]: Returns a copy of this list with the first n elements dropped.

• def splitAt(n: Int): (List[A], List[A]): Returns the pair (this.take(n), this.drop(n)).

Methods of Array[A]

• def apply(n: Int): A: Returns the n

th element of this array.

• def update(n: Int, x: A): Unit: Updates the n

th element of this array. Modifies the array.

Methods of the Array companion object

• Array.tabulate[A](n: Int)(f: Int => A): Returns a new one-dimensional array of size n, initially
populated by f.

• Array.tabulate[A](n1: Int, n2: Int)(f: (Int, Int) => A): Array[Array[A]]: Returns a new
two-dimensional array of size n1 ◊ n2, initially populated by f.

• Array.ofDim[A](n: Int): Array[A]: Returns a new one-dimensional array of size n.

• Array.ofDim[A](n1: Int, n2: Int): Array[Array[A]]: Returns a new two-dimensional array of
size n1 ◊ n2.

6

def fS[A](fL: List[A] => Boolean, w: List[A]): Boolean = {

val n = w.size

if (n == 0) {

return true

}

// Make an array for every start position and length that will

// record if the subsequence is a sentence of words from fL.

val isSentence = Array.tabulate[Boolean](n, n + 1) { (i: Int, j: Int) =>

// We initially only add single words to the array.

fL(w.drop(i).take(j))

}

// Then, we populate the array by combining smaller subsequences into larger ones.

for (j <- 2 to n) { // j is the length of the subsequence.

for (i <- 0 to (n - j)) { // i is the index of the beginning of the subsequence.

for (k <- 1 to (j - 1)) { // k is the length of the first half.

if (isSentence(i)(k) && isSentence(i+k)(j-k)) {

isSentence(i)(j) = true

}

}

}

}

// Check if the entire input is a sentence.

isSentence(0)(n)

}

7

Or, even better:

def fS[A](fL: List[A] => Boolean, w: List[A]): Boolean = {

val n = w.size

// The following array contains, for every index,

// true if we are allowed to start a word there.

val isStartPos = Array.tabulate[Boolean](n + 1)(_ == 0)

for (i <- 0 until n) { // i is the index of the beginning of the word.

if (isStartPos(i)) { // Check if we can start from i.

for (j <- (i + 1) to n) { // j is the index just after the word.

val candidate = w.drop(i).take(j - i) // Get the candidate word.

if (fL(candidate)) { // Check if it is accepted by fL.

// If it is the case, we record that we can start a word here.

isStartPos(j) = true

}

}

}

}

// Check if we can start right after the given input.

isStartPos(n)

}

8

Exercise 4: Type Checking and Inference (20 points)

Consider the following typing rules for a simple language with integers, pairs and functions:

n is an integer literal
� „ n : Int

� „ e1 : Int � „ e2 : Int

� „ e1 + e2 : Int

� „ e1 : Int � „ e2 : Int

� „ e1 ú e2 : Int

� „ e1 : T1 � „ e2 : T2

� „ (e1, e2) : (T1, T2)

� „ e : (T1, T2)

� „ fst(e) : T1

� „ e : (T1, T2)

� „ snd(e) : T2

� ü {(x, T1)} „ e : T2

� „ x ∆ e : T1 ∆ T2

� „ e1 : T1 ∆ T2 � „ e2 : T1

� „ e1(e2) : T2

(x, T) œ �

� „ x : T

Question 4.1

Consider the following type derivation, with type variables T1, . . . , T5, where �0 = ÿ and � = {(x, T2)}:

(x, T2) œ �

� „ x : T2

� „ fst(x) : T4

(x, T2) œ �

� „ x : T2

� „ snd(x) : T5

� „ fst(x)(snd(x)) : T3

�0 „ x ∆ fst(x)(snd(x)) : T1

Circle all the correct answers:
A. There are no assignments of T1, . . . , T5 such that the resulting derivation is valid.

B. In all valid derivations, T3 is equal to T5.

C. There does not exist valid derivations where T1 is Int.

D. In all valid derivations, T2 is equal to (T4, T5).

E. In all valid derivations, T3 is equal to T2 ∆ T1.

Question 4.2

For which of the following expressions does type inference using unification succeed? Circle the correct
answers.

A. y ∆ (x ∆ (x, y))

B. x ∆ (y ∆ (x(y) + y(x))

C. f ∆ (x ∆ f(f(x)))

D. f ∆ (f(x ∆ 4) + f(5))

9

This page intentionally left blank.

10

Exercise 5: Designing a Type System (20 points)

Consider an expression language with a halving operator on even numbers. We are designing an operational
semantics and a type system that ensures that we never half an odd number.

ÈExprÍ ::= half(ÈExprÍ) | ÈExprÍ + ÈExprÍ | INTEGER

The values of our language are all integers. We denote values by n and k.

Question 5.1

In this first question, we will design the operational semantics of our language. Semantics should define rule
that apply to as many expressions as possible subject to the following constraints:

• Our operational semantics should not permit halving unless the value of an integer constant is even

• It should only perform evaluation of operands from left to right

Circle a minimal set of operational semantics rules that describe this behavior.

e e

Õ

half(e) e

Õ

(A) NO

n is a value n = 2k

half(n) k

(B) YES

n is a value
half(n) Â n

2 Ê
(C) NO

half(e) half(eÕ)

half(e) e

Õ

(D) NO

e e

Õ

half(e) half(eÕ)
(E) YES

e

Õ half(e)

half(e) e

Õ

(F) NO

n1 is a value n2 is a value k = n1 + n2 n1 is odd n2 is odd
n1 + n2 k

(G) NO

e e

Õ
n is a value

n + e n + e

Õ

(H) YES

e2 e

Õ
2

e1 + e2 e1 + e

Õ
2

(I) NO

n1 is a value n2 is a value k = n1 + n2 n1 is even n2 is even
n1 + n2 k

(J) NO

n1 is a value n2 is a value k = n1 + n2

n1 + n2 k

(K) YES

e1 e

Õ
1

e1 + e2 e

Õ
1 + e2

(L) YES

11

Question 5.2

In this second part, we will design a type system for our language. The following expressions should type
check:

4 + 5
half(2 + 4)
half(2) + 2
half(half(2) + half(2))

Circle a subset of the following rules that form a sound type system for our language: if a program type
checks, then it must evaluate to a constant using the rules of operational semantics in the previous part.

Make sure that the above expressions can be typed. Do not include rules that are redundant with other rules
you circled: if removing a rule does not decrease the set of programs that type check, then remove the rule.

� „ n : Even

� „ half(n) : Even

(A) NO

� „ n : Integer

� „ half(n) : Integer

(B) NO

� „ n : Even

� „ half(n) : Integer

(C) YES

n is an integer literal n is even
� „ n : Even

(D) YES

n is an integer literal n is odd
� „ n : Integer

(E) YES

� „ n : Even

� „ n : Integer

(F) YES

� „ n : Integer

� „ n : Even

(G) NO
� „ e1 + e2 : Integer

(H) NO

� „ e1 : Integer � „ e2 : Integer

� „ e1 + e2 : Integer

(I) YES

� „ e1 : Integer � „ e2 : Even

� „ e1 + e2 : Even

(J) NO

� „ e1 : Integer � „ e2 : Even

� „ e1 + e2 : Integer

(K) NO

� „ e1 : Even � „ e2 : Even

� „ e1 + e2 : Even

(L) YES

� „ e1 : Integer � „ e2 : Integer

� „ e1 + e2 : Even

(M) NO

� „ e : Integer

� „ e + e : Even

(N) YES

12

	Question 1.1
	Question 1.2
	Question 2.1
	Question 2.2
	Question 2.3
	Question 2.4
	Question 2.5
	Your goal
	API
	Methods of List[A]
	Methods of Array[A]
	Methods of the Array companion object

	Question 4.1
	Question 4.2
	Question 5.1
	Question 5.2

