Code Generation: Notation

We use brackets, [s]| to denote “result of compiling s”.
For compilation of expressions, we can thus write as follows.

[e1 + e] =
[e1]
[e2]
i32.add

[er e] =
[e1]
e2]

i32.mul

Sequential Composition

How to compile statement sequence?

813 825. .3 SN

Sequential Composition

How to compile statement sequence?

81;825---3SN
Solution: concatenate bytecodes for each statement:

[s1;80;...58n] =
[s1]
[s2]

[sn]

Same Thing in Scala-Like Notation

def compileStmt(e: Stmt): List[Bytecode] = e match {
case Sequence(sts) =>
for { st <- sts;

bcode <- compileStmt(st)
} yield bcode

}...

In other words, the case of sequence returns flatMap with recursive call:

case Sequence(sts) => sts.flatMap(compileStmt)

In practice, concatenating lots of lists is inefficient.
We can use e.g. imperative append.

Compiling Control: Example

(func $funco
(param Svar0i32) (param $varl i32)

int count(int counter, (param $var2 i32) (result i32)
int to, (local Svar3i32)
. i32.const 0
int step) { set_local Svar3
int sum =0; loop $label0
do { get_local Svar3
counter = counter + step; get_local Svar0
’ get_local Svar2
sum = sum + counter; i32.add
} while (counter < to); tee_local Svar0
i32.add

return sum; } set_local $var3

get_local Svar0

We need to see how to: get_local $varl

e translate boolean expressions i32'_'t—5
br_if Slabel0
e generate jumps for control end $label0

get_local Svar3)

Representing Booleans

“All comparison operators yield 32-bit integer results with 1
representing true and O representing false.” — WebAssembly spec

Our generated code uses 32 bit int to represent boolean values in:
local variables, parameters, and intermediate stack values.

1, representing true

0, representing false
i32.eq: sign-agnostic compare equal
i32.ne: sign-agnostic compare unequal
i32.1t_s: signed less than
i32.le_s: signed less than or equal
i32.gt_s: signed greater than
i32.ge_s: signed greater than or equal
i32.eqz: compare equal to zero (return 1 if operand is zero, 0 otherwise) // not

Truth Values for Relations: Example

(func SfuncO
(param Svar0i32)
(param Svarli32)
int test(int x, int y){ (resulti32)

return (x <vy);
get_local Svar0

i get_local Svarl
i32.lt_s

Comparisons, Conditionals,

Scoped Labels

int fun(int x, int y){
int res =0;
if (x <y){
res = (y / x);
lelseres=(x/vy);
return res+x+y;

}

(local $var2i32)

block Slabell block Slabel0

get_local Svar0
get_local Svarl
i32.ge_s
br_if Slabel0
get_local Svarl
get_local Svar0
i32.div_s
set_local Svar2
br Slabell
end S$label0
get_local Svar0
get_local Svarl
i32.div_s
set_local Svar2
end Slabell
get_local Svarl
get_local Svar0
i32.add
get_local Svar2
i32.add

// to else branch

// done with if
// else branch

// end of if

Main Instructions for Labels

block: the beginning of a block construct, a sequence
of instructions with a label at the end

loop: a block with a label at the beginning which
may be used to form loops

br: branch to a given label in an enclosing construct

br_if: conditionally branch to a given label in an
enclosing construct

return: return zero or more values from this function

end: an instruction that marks the end of a block,
loop, if, or function

Compiling If Statement

block Slabell block Slabel0
(negated condition code)
br_if Slabel0 // to else branch

Notation for compilation:
(true case code)

[if (cond) tStmt else eStmt] = br $labell // done with if
block SnAfter block SnElse end $label0 // else branch
[lcond] (false case code)
b‘& i $nEIse end Slabell // end of if
[tStmt |
br SnAfter
end S$nElse:
[eStmt]

end SnAfter:

Is there alternative without negating condition?

How to introduce labels

e For forward jumps to Slabel: use
block Slabel

end Slabel

e For backward jumps to Slabel: use
loop Slabel

end Slabel

WebAssembly's if

WebAssembly has dedicated bytecodes for if expressions, i.e., if, else, end.

[econd]

if
[ethen]

else

[eelse]
end

[67'est]

> Given the block and br[_if] instructions you saw this construct isn't necessary.
How can we desugar snippets like the above?

WebAssembly's if

> Given the block and br[_if] instructions you saw this construct isn’'t necessary.
How can we desugar snippets like the above?

block nAfter
block nElse
[' econd]
br_if nElse
[ethen]
br nAfter
end //nElse:

[eelse]
end //nAfter:

[erest]

WebAssembly's if

> Given the block and br[_if] instructions you saw this construct isn’'t necessary.
How can we desugar snippets like the above?

block nAfter
block nElse

[‘ econd]
br_if nElse

[ethen]
br nAfter

end //nElse:

[eelse]
end //nAfter:

[erest]

> Can we avoid the negation on the branching condition e..,q?

Avoiding negation

> Can we avoid the negation on the branching condition e.o,q?

block nAfter
block nThen
[econd]
br_if nThen

[eelse]
br nAfter

end //nThen:

[ethen]
end //nAfter:

[erest]

Translating control flow structures more efficiently

Introduce an imaginary large instruction branch(c,nThen,nElse).

Here c is a potentially complex boolean expression (the main reason why branch
is not a built-in bytecode instruction),

whereas nTrue and nFalse are the labels we jump to depending on the boolean
value of c.

We will show how to
» use branch to compile if and short-circuiting operators,

» by expanding branch recursively into concrete bytecode instructions.

Translating control flow structures more efficiently

[-Lf (econd) €then else eelse] =

block nAfter
block nElse
block nThen
branCh(econd, nThen, nE'Lse)
end //nThen:
[ethen]
br nAfter
end //nElse:
[eelse]
end //nAfter:

[erest]

Decomposing conditions in branch

branch(!e,nThen,nElse) :=
branch(e,nElse,nThen)

branch(e; &&e3,nThen,nElse) :=
block nlLong
branch(e; ,nLong,nElse)
end //nLong:
branch(e;,nThen,nElse)

branch(e; | e2,nThen,nElse) :=
block nlLong
branch(e; ,nThen,nLong)
end //nLong:
branch(e;,nThen,nElse)

Decomposing conditions in branch

branch (true,nThen,nElse) :=
br nThen

branch(false,nThen,nElse) :=
br nElse

branch(b,nThen,nElse) := (wherebd is a local var)
get_local #b
br_if nThen
br nElse

Decomposing conditions in branch

branch(e; == es,nThen,nElse) := (where ey,eq are of type int)
le1]
le2]
i32.eq
br_if nThen
br nElse

. analogously for other relations

Returning the result from branch

Consider storing x = ¢
where x, ¢ are boolean and ¢ contains && or ||

How do we put the result of ¢ on the stack so it can be stored in z7?

[z =c] =
block nAfter
block nElse
block nThen
branch(c,nThen,nElse)
end //nThen:
i32.const 1
br nAfter
end //nElse:
i32.const 0
end //nAfter:
set_local #x

Destination label parameters

Recall that in branch(c,nThen,nElse) we had two arguments nThen and
nElse, which told us where to jump to execute code of the corresponding
branches.

Similarly, up until now we explicitly enclosed our translated program fragments in
an nAfter block, so we could jump to the “rest” of the program.

Destination label parameters

Recall that in branch(c,nThen,nElse) we had two arguments nThen and
nElse, which told us where to jump to execute code of the corresponding
branches.

Similarly, up until now we explicitly enclosed our translated program fragments in
an nAfter block, so we could jump to the “rest” of the program.

= We can generalize our translation function |- | to take a destination label
designating the “rest” in the surrounding code.

Destination label parameters

Recall that in branch(c,nThen,nElse) we had two arguments nThen and
nElse, which told us where to jump to execute code of the corresponding
branches.

Similarly, up until now we explicitly enclosed our translated program fragments in
an nAfter block, so we could jump to the “rest” of the program.

= We can generalize our translation function |- | to take a destination label
designating the “rest” in the surrounding code.

(-] = [-] nAfter

= The caller of the translation function determines where to continue!

Translations with an nAfter label parameter (1)

[z =¢] nAfter :=
block nSet
[e] nSet
// note that the rest of this block is never reached!
end //nSet:
set_local #x
br nAfter

[s1; s2] nAfter =
block nSecond
[s1] nSecond
end //nSecond:

[s2] nAfter

Translations with an nAfter label parameter (2)

[1f (€cond) €then €lse eqse] NAfter =
block nElse
block nThen
branch(e.,,s,nNThen,nElse)
end //nThen:
[ethen] NAfter
end //nElse:
[ecise] NAfter

[return e] nAfter :=
block nRet
[e] nRet
end //nRet:
return

Switch statements

Let us assume our language had a switch statement (like C and Java do, for
instance):

switch (escrutinee) {
case c;: e

case c¢,: ¢,
default: egerquir

}

> How can we compile such switch statements?

Compiling switch statements

[stitch] nAfter =
block nDefault
block nCase,

block nCase;
block nTest
[escrutineré] nTest

end //nTest:

tee_local #s (where s is some fresh local of type i32)
i32.const c1; i32.eq; br_if nCase;

get_local #s

i32.const c2; i32.eq; br_if nCases

br nDefault
end //nCase;:
[e1] nCases

end //nCasey,:

[en] nDefault
end //nDefault:
[edefault] nAfter

Compiling switch statements

[stitch] nAfter =
block nDefault
block nCase,

block nCase;
block nTest
[escrutineré] nTest

end //nTest:

tee_local #s (where s is some fresh local of type i32)
i32.const c1; i32.eq; br_if nCase;

get_local #s

i32.const c2; i32.eq; br_if nCases

br nDefault
end //nCase;:
[e1] nCases

end //nCasey,:

[en] nDefault
end //nDefault:
[edefault] nAfter

> How do we translate break?

Compiling switch statements

At any point during the translation of switch we want to keep track not only
where to jump after, but also where to jump on a break!

Compiling switch statements

At any point during the translation of switch we want to keep track not only
where to jump after, but also where to jump on a break!

= Let us extend the translation function by another label parameter.

Compiling switch statements

At any point during the translation of switch we want to keep track not only
where to jump after, but also where to jump on a break!

= Let us extend the translation function by another label parameter.
-] nAfter = |[-| nAfter nBreak

= The caller of the translation function determines where to continue in the
“normal’’ case, but also when break is called!

Compiling switch statements

Translating break then is straightforward: One simply ignores nAfter and
follows nBreak instead.

[break] nAfter nBreak :=
br nBreak

> What do we have change in our translation of switch statements?

Compiling switch statements with breaks

[sswiten] NAfter nBreak :=
block nDefault
block nCase,

block nCase;
block nTest
[escrutinee] NTest nBreak

end //nTest:

tee_local #s (where s is some fresh local of type 132)
i32.const c¢1; i32.eq; br_if nCase;

get_local i#s

i32.const c2; i32.eq; br_if nCases

br nDefault
end //nCase;:
[e1] nCasez nAfter

end //nCase,:

[en] nDefault nAfter
end //nDefault:
[edefauit] NAfter nAfter

Translating While Statement

Consider translation of the while statement, which gets 'nextLabel’ destination,
specifying where to jump when exiting the loop.

We assume that the instructions emitted are inside the block that introduced
nextLabel.

What is the translation schema?

[while (cond) stmt | nextLabel =

Translating While Statement

Consider translation of the while statement, which gets 'nextLabel’ destination,
specifying where to jump when exiting the loop.

We assume that the instructions emitted are inside the block that introduced
nextLabel.

What is the translation schema?

[while (cond) stmt | nextLabel =
loop startLabel
block bodylLabel
branch(cond, bodylLabel, nextLabel)
end // bodylLabel
[stmt | startLabel
end

break Statement

In many languages, a break statement can be used to exit from the loop. For
example, it is possible to write code such as this:

while (condl) {
codel
if (cond2) break;
code2

}

Loop executes codel and checks the condition cond2. If condition holds, it
exists. Otherwise, it continues and executes code2 and then goes to the
beginning of the loop, repeating the process.

Give translation scheme for this loop construct and explain how the translation of
other constructs needs to change.

break Statement - Propagating Exit Label

For a break statement to know where to jump, it needs to be given a label
indicating the exit of the loop. When we translate a statement (such as i f)
potentially containing break, the translation of this statement needs both the
parameter to pass on to break as well as the parameter to jump to during
normal execution. Therefore, each statement needs two destination parameters:
the 'nextLabel’ and the 'loopExit’ label. For example,

[1f (cond) thenC else elseC | nextL loopExitL =

break Statement - Propagating Exit Label

For a break statement to know where to jump, it needs to be given a label
indicating the exit of the loop. When we translate a statement (such as i f)
potentially containing break, the translation of this statement needs both the
parameter to pass on to break as well as the parameter to jump to during
normal execution. Therefore, each statement needs two destination parameters:
the 'nextLabel’ and the 'loopExit’ label. For example,

[1f (cond) thenC else elseC | nextL loopExitL =

block elsel

block thenL

branch(cond, thenL, elsel)

end // thenL

[thenC] nextL loopExitL
end // elsel
[elseC] nextL loopExitL

break Statement - Using and Setting Labels

Translating break:

| break | nextLabel loopExitLabel =

break Statement - Using and Setting Labels

Translating break:

| break | nextLabel loopExitLabel =
br loopExitLabel

break Statement - Using and Setting Labels

Translating break:

| break | nextLabel loopExitLabel =
br loopExitLabel

Translating while:

[while (cond) stmt | nextLabel loopExitLabel =

break Statement - Using and Setting Labels

Translating break:

| break | nextLabel loopExitLabel =
br loopExitLabel

Translating while:

[while (cond) stmt | nextLabel loopExitLabel =
loop startLabel
block bodylLabel
branch(cond, bodylLabel, nextLabel)
end // bodylLabel
[stmt]

break Statement - Using and Setting Labels

Translating break:

| break | nextLabel loopExitLabel =
br loopExitLabel

Translating while:

[while (cond) stmt | nextLabel loopExitLabel =
loop startLabel
block bodylLabel
branch(cond, bodylLabel, nextLabel)
end // bodylLabel
[stmt | startLabel

break Statement - Using and Setting Labels

Translating break:

| break | nextLabel loopExitLabel =
br loopExitLabel

Translating while:

[while (cond) stmt | nextLabel loopExitLabel =
loop startLabel
block bodylLabel
branch(cond, bodylLabel, nextLabel)
end // bodylLabel
[stmt | startLabel nextLabel
end

break Statement - Using and Setting Labels

Translating break:

| break | nextLabel loopExitLabel =
br loopExitLabel

Translating while:

[while (cond) stmt | nextLabel loopExitLabel =
loop startLabel
block bodylLabel
branch(cond, bodylLabel, nextLabel)
end // bodylLabel
[stmt | startLabel nextLabel
end

What if we want to have continue that goes to beginning of the loop?

Loops with break and continue

Translating break:

[break | nextL loopExitL loopStartL =
br loopExitL

Translating continue:

| continue | nextL loopExitL loopStartL =
br loopStartL

Translating while:

[while (cond) stmt | nextL loopExitL loopStartL =
loop startLabel
block bodylLabel
branch(cond, bodylLabel, nextL)
end // bodylLabel
[stmt | startLabel nextL startLabel
end

Explain difference between labels loopStartL and startLabel

