
Lecture 10: Type Inference

Type inference

Languages such as Haskell, ML, ocaml support inference of types in most cases

Using Amy syntax, with type inference we could write programs without type
annotations:
def message(s, verbose) = {

if (verbose > 1) { print(s) }
else { print(".") }

}

The system would infer types of parameters and result, and check that the program
type checks. If it is not possible to find types, the type checker will still complain.
I as concise code as in untyped language
I type inference still catches meaningless programs

Today we explain how to do such type inference, for simple types

Intuition and key ideas
def message(s, verbose) = {

if (verbose > 1) { print(s) }
else { print(".") }

}

> : Int × Int → Bool , verbose : τverbose , 1 : Int
(verbose > 1) : Bool

so τverbose = Int, for application of > to make sense.
print : String → Unit, s : τs

print(s) : Unit
so τs = String , for application of print to make sense.
Both if branches return Unit, and so should message
Strategy:

1. Use type variables (e.g. τverbose , τs) to denote unknown types
2. Use type checking rules to derive constraints among type variables (arguments

have expected types)
3. Use unification algorithm to solve constraints

Language extended with tuples and functions
(Still) a language similar to one in the project.
Types are:

1. primitive types: Int, Bool, String, Unit
2. type constructors: Pair[A,B] denotes A× B, Function[A,B] denotes A→ B (A,B

are argument types)
We can write Function[Pair[Int,Int], Bool] as (Int × Int)→ Bool
This gives abstract syntax of types:

t := Int | Bool | String | Unit | (t1 × t2) | (t1 → t2)

Terms now also include pairs, anonymous functions:

t := x | c | f (t1, . . . , tn) | if (t) t1 else t2 | (t1, t2) | (x ⇒ t)

x denotes variables, c literals
Primitives P1,P2 for pair components, if t = (x , y) then P1(t) = x , P2(t) = y . Like
Scala’s t. 1 and t. 2

Usual type rules

Γ ` b : Bool Γ ` t1 : τ Γ ` t2 : τ
Γ ` (if (b) t1 else t2) : τ

Γ ` f : τ1 × · · · × τn → τ0 Γ ` t1 : τ1 . . . Γ ` tn : τn
Γ ` f (t1, . . . , tn) : τ0

Γ(x) = τ

Γ ` x : τ
Rules for constants:

”...” : String true : Boolean false : Boolean . . .

Rules for pairs

Γ ` t1 : τ1 Γ ` t2 : τ2
Γ ` (t1, t2) : (τ1, τ2)

If the first component t1 has type τ1 and the second component t2 has type τ2 then
the pair (t1, t2) has the type (τ1, τ2).

Γ ` t : (τ1, τ2)
Γ ` P1(t) : τ1

Γ ` t : (τ1, τ2)
Γ ` P2(t) : τ2

Rules for anonymous function

Γ[x := τ1] ` t : τ2
Γ ` (x ⇒ t) : (τ1 → τ2)

What does this rule say?

Anonymous function x ⇒ t that maps x to the value given by term t has a function
type.
The type of this function is τ1 → τ2, where τ1 is the type of x and τ2 is the type of t.
Inside t there may be uses of x , which has some type τ1. This is why Γ is extended
with binding of x to τ1 when type checking t.

Rules for anonymous function

Γ[x := τ1] ` t : τ2
Γ ` (x ⇒ t) : (τ1 → τ2)

What does this rule say?
Anonymous function x ⇒ t that maps x to the value given by term t has a function
type.

The type of this function is τ1 → τ2, where τ1 is the type of x and τ2 is the type of t.
Inside t there may be uses of x , which has some type τ1. This is why Γ is extended
with binding of x to τ1 when type checking t.

Rules for anonymous function

Γ[x := τ1] ` t : τ2
Γ ` (x ⇒ t) : (τ1 → τ2)

What does this rule say?
Anonymous function x ⇒ t that maps x to the value given by term t has a function
type.
The type of this function is τ1 → τ2, where τ1 is the type of x and τ2 is the type of t.

Inside t there may be uses of x , which has some type τ1. This is why Γ is extended
with binding of x to τ1 when type checking t.

Rules for anonymous function

Γ[x := τ1] ` t : τ2
Γ ` (x ⇒ t) : (τ1 → τ2)

What does this rule say?
Anonymous function x ⇒ t that maps x to the value given by term t has a function
type.
The type of this function is τ1 → τ2, where τ1 is the type of x and τ2 is the type of t.
Inside t there may be uses of x , which has some type τ1. This is why Γ is extended
with binding of x to τ1 when type checking t.

Example

def translatorFactory(dx, dy) = {
p ⇒ (P1(p) + dx, P2(p) + dy)

}
def upTranslator = translatorFactory(0, 100)
def test = upTranslator((3, 5)) // computes (3, 105)

Type inference can find types that correspond to this annotated program:
def translatorFactory(dx: Int, dy: Int) : (Int,Int) ⇒ (Int,Int) = {

(p : (Int,Int)) ⇒ (P1(p) + dx, P2(p) + dy)
}
def upTranslator : (Int,Int) ⇒ (Int,Int) =

translatorFactory(0, 100)
def test: (Int,Int) =

upTranslator((3, 5))

Type checking showing inferred types work
def translatorFactory(dx: Int, dy: Int) : (Int,Int) ⇒ (Int,Int) = {

(p : (Int,Int)) ⇒ (P1(p) + dx, P2(p) + dy)
}
def upTranslator : (Int,Int) ⇒ (Int,Int) =

translatorFactory(0, 100)
def test: (Int,Int) =

upTranslator((3, 5))

Example steps in type derivation:

Γ[p := (Int × Int)] ` P1(p) : Int Γ[p := (Int × Int)] ` dx : Int
Γ[p := (Int × Int)] ` (P1(p) + dx) : Int . . .

Γ[p := (Int × Int)] ` (P1(p) + dx ,P2(p) + dy) : (Int × Int)
Γ ` p ⇒ (P1(p) + dx ,P2(p) + dy) : ((Int × Int)→ (Int × Int))

How do we discover dx : Int? We construct the derivation tree keeping type of dx
symbolic until some derivation step tells us what it must be. Here, + expects two
integers in P1(p) + dx

Deriving constraints in type inference
def translatorFactory(dx, dy) = {

p ⇒ (P1(p) + dx, P2(p) + dy)
}

Let Γ1 = Γ[p := τp]

Γ1 ` p : τp τp = (τ3, τ4)
Γ1 ` P1(p) : τ3 Γ1 ` dx : τdx Γ1 ` + : (Int, Int)→ Int

Γ1 ` (P1(p) + dx) : τ1 τ3 = Int, τdx = Int, τ1 = Int
Γ1 ` (P1(p) + dx ,P2(p) + dy) : τr τr = (τ1, τ2)

Γ ` (p ⇒ (P1(p) + dx ,P2(p) + dy)) : τfun τfun = τp → τr

Analogously, for the second component of the pair, we derive τ2 = Int, τ4 = Int on
other branches of the derivation tree.
From these constraints it follows τp = (Int, Int), τr = (Int, Int) and

τfun = (Int, Int)→ (Int, Int)

Constraints from type rules: application

Consider application syntax tree node f (t1, . . . , tn)
Assume we have a type variable τt for each sub-term t and the resulting term
So we have, using notation for type annotation (as in Scala):

(f : τf)(t1 : τ1, . . . , tn : τn) : τ0

Type rule for function application:

Γ ` f : τ1 × · · · × τn → τ0 Γ ` t1 : τ1 . . . Γ ` tn : τn
Γ ` f (t1, . . . , tn) : τ0

then simply requires
τf = τ1 × · · · × τn → τ0

Instead of worrying how to compute one of the types from others, we simply write
down this constraint for each application node (also for primitives)

Constraints from type rules: anonymous functions

Consider anonymous function syntax tree node x ⇒ t
Assume we have a type variable for each sub-term and the bound variable x

((x : τx)⇒ (t : τt)) : τfun

Type rule for anonymous functions:

Γ[x := τ1] ` t : τ2
Γ ` (x ⇒ t) : (τ1 → τ2)

then simply requires
τfun = (τx → τt)

To derive constraints just state the equality between type variables in the tree node
and the types that appear in the rule.

Further constraints

tree node constraint
(t1 : τ1, t2 : τ2) : τ τ = (τ1, τ2)
P1(t : τ) : τ1 τ = (τ1, τ2) τ2 is a fresh type var.
P2(t : τ) : τ2 τ = (τ1, τ2) τ1 is a fresh type var.
(if (b : τb) t1 : τ1 else t2 : τ2) : τ τ = τ1, τ = τ2, τb = Bool
x : τx Γ(x) = τx
false : τ τ = Bool
true : τ τ = Bool
k : τ τ = Int
”...” : τ τ = String

Summary of type inference

1. Introduce type variable for each tree node
2. For each tree node use type rules to derive constraints among the type variables
3. Solve the resulting set of equations on type variables

Solving equations on simple types: unification

Types in equations have the following syntax:

t := τ | Int | Bool | String | Unit | (t1 × t2) | (t1 → t2)

We assume that
I primitive types are disjoint and distinct from pairs and functions
I pairs and functions are always distinct
I two pairs are equal iff their corresponding component types are equal
I two functions are equal iff their argument and result types are equal

Idea of the algorithm: eliminate variables that are alone on left or right side;
decompose pair and function equalities.

Unification algorithm
Works on a set of equations. Applies the following rules as long as they change
equation set
Let a denote a type variable and τ a term distinct from a
Orient: Replace τ = a with a = τ when τ is not a type variable
Delete useless: Remove a = a
Eliminate: Given a = τ where τ does not contain a, replace a with τ in all remaining
equations
Occurs check: Given a = τ where τ contains a, report clash (type error)
Decompose pairs: Replace (τ1, τ2) = (τ ′

1, τ
′
2) with two equations τ1 = τ ′

1 and τ2 = τ ′
2.

Decompose functions: Replace (τ1 → τ2) = (τ ′
1 → τ ′

2) with two equations τ1 = τ ′
1

and τ2 = τ ′
2.

Decomposition clash: Given (τ1, τ2) = (τ ′
1 → τ ′

2) or (τ1 → τ2) = (τ ′
1, τ

′
2), or function

or pair type equal to primitive type, report clash.
Primitive types: Remove equality between identical primitive types (Int, Bool, Unit,
String). Report clash given equality between distinct primitive types.

Properties of unification

Algorithm always terminates (running time almost linear given the right data
structures)

If it reports clash it means that equations have no solution (there exist no annotations
that make program type check)

Otherwise, the equations have one or more solutions. Note that a variable that appears
on left of equation does not appear on the right (else the eliminate rule would apply).
Call a variable that only appears on the right a parameter.
If there are no parameters, there is exactly one solution. Otherwise, for each
assignment of types to parameters we obtain a solution.
Moreover, all solutions are obtained this way. Therefore, the result of unification
algorithm describes all possible ways to assign simple types to the program.

What does the algorithm do in this case?

def rightNest(t) = {
(P1(P1(t)), (P2(P1(t)), P2(t)))

}
def test1 = rightNest(((1, 2), 3))

What happens in this case?

def rightNest(t) = {
(P1(P1(t)), (P2(P1(t)), P2(t)))

}
def test1 = rightNest(((1, 2), 3))
def test2 = rightNest((false , true), false)

Program fails to type check because the argument type of t becomes equal to both Int
and Bool, which is inconsistent.

More flexibility through generalization
def rightNest(t) = {

(P1(P1(t)), (P2(P1(t)), P2(t)))
}
def test1 = rightNest(((1, 2), 3))
def test2 = rightNest((false , true), false)

After completing the inference for a function (e.g. rightNest), first generalize its free
type variables into a variable schema:

∀a, b, c. ((a, b), c))→ (a, (b, c))
Then, each time we use the function, replace quantified variables with fresh variables.
Use in test1:

((a1, b1), c1))→ (a1, (b1, c1))
a1 = Int, b1 = Int, c1 = Int
Use in test2:

((a2, b2), c2))→ (a2, (b2, c2))
a2 = Bool , b2 = Bool , c2 = Bool
With this new approach, the program type checks

More examples for type inference
def S(x, y, z) = (x(z))(y(z))

def Sb(x, y, z) = (x(z))(z(x))

def cm(f, g) = x => f(g(x))

def cr(f) = x => (y => f(x,y))

def uncr(f) =
p => (f(P1(p)))(P2(p))

def pr(x, y) = c => (c(x))(y)

def c1(p) = p(x => (y => x))

def c2(p) = p(x => (y => y))

def e(x, y) = c1(pr(x,y))

Occurs check

Expression x(x) generates constraint

τx = τx → τ1

which fails occurs check.

Similarly for expression x(z)(z(x))

