Automating Construction of Lexers by converting

Regular Expressions to Automata

Regular Expression to Programs

- How can we write a lexer that has these two classes of tokens:
- a*b
- aaa
- Consider run of lexer on: aaaab and on: aaaaaa

Regular Expression to Programs

- How can we write a lexer that has these two classes of tokens:
- a*b
- aaa
- Consider run of lexer on: aaaab and on: aaaaaa
- A general approach:

Finite Automaton (Finite State Machine)

$$
A=\left(\Sigma, Q, q_{0}, \delta, F\right)
$$

$$
\begin{gathered}
\delta \subseteq Q \times \Sigma \times Q, \\
q_{0} \in Q \\
F \subseteq Q
\end{gathered}
$$

$$
\begin{aligned}
& q_{0} \in Q \\
& q_{1} \subseteq Q
\end{aligned}
$$

- Σ - alphabet

$$
\delta=\left\{\left(q_{0}, a, q_{1}\right),\left(q_{0}, b, q_{0}\right)\right.
$$ $\left.\left(q_{1}, a, q_{1}\right),\left(q_{1}, b, q_{1}\right),\right\}$

- Q - states (nodes in the graph)
- q_{0} - initial state (with '->' sign in drawing)
- δ - transitions (labeled edges in the graph)
- F - final states (double circles)

Numbers with Decimal Point

What if the decimal part is optional?

Kinds of Finite State Automata

-DFA: δ is a function : $(Q, \Sigma) \mapsto Q$

- NFA: δ could be a relation
- In NFA there is no unique next state. We have a set of possible next states.

Remark: Relations and Functions

- Relation $r \subseteq B \times C$

$$
r=\{\ldots,(b, c 1),(b, c 2), \ldots\}
$$

- Corresponding function: $f: B$-> 2^{C}

$$
\begin{aligned}
f & =\{\ldots(b,\{c 1, c 2\}) \ldots\} \\
f(b) & =\{c \mid(b, c) \in r\}
\end{aligned}
$$

- Given a state, next-state function returns a set of new states
for deterministic automaton, set has exactly 1 element

Allowing Undefined Transitions

- Undefined transitions are equivalent to transition into a sink state (from which one cannot recover)

Allowing Epsilon Transitions

- Epsilon transitions:
-traversing them does not consume anything
- Transitions labeled by a word:
-traversing them consumes the entire word

When Automaton Accepts a Word

Automaton accepts a word w iff there exists a path in the automaton from the starting state to some accepting state such that concatenation of words on the path gives w.

- Does the automaton accept the word a ?

Exercise

- Construct a NFA that recognizes all strings over $\{a, b\}$ that contain "aba" as a substring

Running NFA (without epsilons)

```
def \delta(a : Char)(q : State) : Set[States] = { ... }
def \delta'(a : Char, S : Set[States]) : Set[States] = {
    for (q1 <- S, q2 <- \delta(a)(q1)) yield q2 // S.flatMap(\delta(a))
}
def accepts(input : MyStream[Char]) : Boolean = {
var S : Set[State] = Set(q0) // current set of states
while (!input.EOF) {
val a = input.current
S = ''(a,S) // next set of states
}
!(S.intersect(finalStates).isEmpty)
```

\}

NFA Vs DFA

- Every DFA is also a NFA (they are a special case)
- For every NFA there exists an equivalent DFA that accepts the same set of strings
- But, NFAs could be exponentially smaller (succinct)
- There are NFAs such that every DFA equivalent to it has exponentially more number of states

Regular Expressions and Automata

Theorem:

Let L be a language. There exists a regular expression that describes it if and only if there exists a finite automaton that accepts it.

Algorithms:

- regular expression \rightarrow automaton (important!)
- automaton \rightarrow regular expression (cool)

Recursive Constructions

Union:

Concatenation:

Recursive Constructions

Star:

Exercise: (aa)* | (aaa)*

- Construct an NFA for the regular expression

NFAs to DFAs (Determinization)

- keep track of a set of all possible states in which the automaton could be
- view this finite set as one state of new automaton

NFA to DFA Conversion

Possible states of the DFA: 2^{Q}

$$
\begin{aligned}
& \{\},\{0\}, \ldots\{12\},\{0,1\}, \ldots,\{0,12\}, \ldots\{12,12\} \\
& \{0,1,2\} \ldots,\{0,1,2 \ldots, 12\}\}
\end{aligned}
$$

NFA to DFA Conversion

Epsilon Closure
-All states reachable from a state through epsilon
$-\mathrm{q} \in E(q)$

- If $q_{1} \in E(q)$ and $\delta\left(q_{1}, \epsilon, q_{2}\right)$ then $q_{2} \in E(q)$
$E(0)=\{\quad\} \quad E(1)=\{ \} \quad E(2)=\{ \}$

NFA to DFA Conversion

-DFA: $\left(\Sigma, 2^{Q}, q_{0}^{\prime}, \delta^{\prime}, F^{\prime}\right)$

- $q_{0}^{\prime}=E\left(q_{0}\right)$
- $\delta^{\prime}\left(q^{\prime}, a\right)=\mathrm{U}_{\left\{\exists q_{1} \in q^{\prime}, \delta\left(q_{1}, a, q_{2}\right)\right\}} E\left(q_{2}\right)$
- $F^{\prime}=\left\{q^{\prime} \mid q^{\prime} \in 2^{Q}, q^{\prime} \cap F \neq \varnothing\right\}$

NFA to DFA Conversion through Examle

Clarifications

- what happens if a transition on an alphabet ' a ' is not defined for a state ' q ' ?
- $\delta^{\prime}(\{q\}, a)=\varnothing$
- $\delta^{\prime}(\varnothing, a)=\varnothing$
- Empty set represents a state in the NFA
- It is a trap/sink state: a state that has selfloops for all symbols, and is non-accepting.

Minimizing DFAs: Procedure

- Write down all pairs of state as a table
- Every cell in the table denotes whether the corresponding states are equivalent

	$\mathrm{q1}$	q 2	$\mathrm{q3}$	$\mathrm{q4}$	q 5
q 1	x	$?$	$?$	$?$	$?$
q 2		x	$?$	$?$	$?$
$\mathrm{q3}$			x	$?$	$?$
$\mathrm{q4}$				x	$?$
q5					x

Minimizing DFAs: Procedure

- Inititalize cells (q1, q2) to false if one of them is final and other is non-final
- Make the cell (q1, q2) false, if q1 \rightarrow q1' on some alphabet symbol and q2 \rightarrow q2' on 'a' and q1' and q2' are not equivalent
- Iterate the above process until all non-equivalent states are found

Minimizing DFAs: Illustration

(0) ${ }^{\text {a }}$ (1 $\xrightarrow{\text { a }}$ (2) ${ }^{\text {a }}$ (3) ${ }^{\text {a }}$ (4) ${ }^{\text {a }}$ (5)							
	0	1	2	${ }^{3}$	4	5	6
0	\times						
1		\times					
2			\times				
3				\times			
5					*		
5						\times	
6							x

Properties of Automata

Complement:

- Given a DFA A, switch accepting and non-accepting states in A gives the complement automaton A^{c}
- $\mathrm{L}\left(\mathrm{A}^{\mathrm{c}}\right)=\left(\Sigma^{*} \backslash L(A)\right)$

Note this does not work for NFA
Intersection: $\mathrm{L}\left(\mathrm{A}^{\prime}\right)=L\left(A_{1}\right) \cap L\left(A_{2}\right)$

$$
\begin{aligned}
& -A^{\prime}=\left(\Sigma, Q_{1} \times Q_{2},\left(q_{0}^{1}, q_{0}^{2}\right), \delta^{\prime}, F_{1} \times F_{2}\right) \\
& -\delta^{\prime}\left(\left(q_{1}, q_{2}\right), a\right)=\delta\left(q_{1}, a\right) \times \delta\left(q_{2}, a\right)
\end{aligned}
$$

Emptiness of language, inclusion of one language into another, equivalence - they are all decidable

Exercise 0.1: on Equivalence

Prove that ($\left.\mathrm{a}^{*} \mathrm{~b}^{*}\right)^{*}$ is equivalent to (a|b)*

Sequential Hardware Circuits are Automata

$A=\left(\Sigma, Q, q_{0}, \delta, F\right)$
Q - states of flip-flops, registers, etc.
Each state q_{i} is given by values $v:$ Vars $\rightarrow\{0,1\}$
δ - combinational circuit that determines next state: given v compute v ' according to a given logical circuit
Circuit can be exponentially smaller than graph

