
Computer Language Processing - Exercise Session 7 - 2018

Exercise 1

Complete solution for the first

Long solution for def S(x, y, z) = (x(z))(y(z))

We begin by assigning type variable to nodes:

x: t1
y: t2
z: t3
(x(z))(y(z)): t4
x(z): t5
y(z): t6

Then, we generate constraints:

From the node (x(z))(y(z)) we get: t5 = (t6 => t4)
From the node x(z) we get: t1 = (t3 => t5)
From the node y(z) we get: t2 = (t3 => t6)

Then, we solve constraints:

t5 = (t6 => t4)
t1 = (t3 => t5)
t2 = (t3 => t6)

We first eliminate t5 (eliminated constraints will appear in italics).

t5 = (t6 => t4)
t1 = (t3 => (t6 => t4))
t2 = (t3 => t6)

Now, all rules leave the equation set untouched. We are done with constraint solving.

We therefore obtain:

def S(x: t3 => (t6 => t4), y: t3 => t6, z: t3): t4

Which, after generalisation, leads to:

def S[A, B, C](x: A => (B => C), y: A => B, z: A): C

Computer Language Processing - Exercise Session 7 - 2018

Short solutions:

def cm[A, B, C](f: A => B, g: C => A): C => B

def cr[A, B, C](f: (A, B) => C): A => B => C

def uncr[A, B, C](f: A => B => C): ((A, B)) => C

def pr[A, B, C](x: A, y: B): (A => B => C) => C

def c1[A, B, C](p: (A => B => A) => C): C

def c2[A, B, C](p: (A => B => B) => C): C

def e[A, B, C](x: A, y: B): A

// = c1[A, B, A](pr[A, B, A](x,y))

Computer Language Processing - Exercise Session 7 - 2018

Longer solution for the last (occur check):

Long solution for def S(x, y, z) = (x(z))(z(x))

We begin by assigning type variable to nodes:

x: t1
y: t2
z: t3
(x(z))(z(x)): t4
x(z): t5
z(x): t6

Then, we generate constraints:

From the node (x(z))(z(x)) we get: t5 = (t6 => t4)
From the node x(z) we get: t1 = (t3 => t5)
From the node z(x) we get: t3 = (t1 => t6)

Then, we (try to) solve constraints:

t5 = (t6 => t4)
t1 = (t3 => t5)
t3 = (t1 => t6)

We first eliminate t5:

t5 = (t6 => t4)
t1 = (t3 => (t6 => t4))
t3 = (t1 => t6)

Then, we eliminate t1:

t5 = (t6 => t4)
t1 = (t3 => (t6 => t4))
t3 = ((t3 => (t6 => t4)) => t6)

Then, we stop due to the “occurs check” rule.

The constraints could not be solved and therefore type inference fails. The function definition
can not be typed in our type system.

