Exercise 1

Complete solution for the first

Long solution for def S(x, y, z) = (x(z))(y(z))

We begin by assigning type variable to nodes:

x: t₁
y: t₂
z: t₃
(x(z))(y(z)): t₄
x(z): t₅
y(z): t₆

Then, we generate constraints:

From the node $(x(z))(y(z))$ we get:	t_{5}	=	(t ₆ :	=>	$t_4)$
From the node x(z) we get:	t_1	=	(t ₃ :	=>	$t_5)$
From the node y(z) we get:	t_2	=	(t ₃ :	=>	$t_6)$

Then, we solve constraints:

$$t_5 = (t_6 \Rightarrow t_4)$$

 $t_1 = (t_3 \Rightarrow t_5)$
 $t_2 = (t_3 \Rightarrow t_6)$

We first eliminate t_5 (eliminated constraints will appear in *italics*).

$$t_{5} = (t_{6} \Rightarrow t_{4}) t_{1} = (t_{3} \Rightarrow (t_{6} \Rightarrow t_{4})) t_{2} = (t_{3} \Rightarrow t_{6})$$

Now, all rules leave the equation set untouched. We are done with constraint solving.

We therefore obtain:

def S(x: $t_3 \Rightarrow (t_6 \Rightarrow t_4)$, y: $t_3 \Rightarrow t_6$, z: t_3): t_4

Which, after generalisation, leads to:

def S[A, B, C](x: A => (B => C), y: A => B, z: A): C

Short solutions:

def cm[A, B, C](f: $A \Rightarrow B$, g: $C \Rightarrow A$): $C \Rightarrow B$

def cr[A, B, C](f: (A, B) => C): A => B => C

def uncr[A, B, C](f: A => B => C): ((A, B)) => C

def pr[A, B, C](x: A, y: B): (A => B => C) => C

def c1[A, B, C](p: (A => B => A) => C): C

def c2[A, B, C](p: (A => B => B) => C): C

def e[A, B, C](x: A, y: B): A
 // = c1[A, B, A](pr[A, B, A](x,y))

Longer solution for the last (occur check):

Long solution for def S(x, y, z) = (x(z))(z(x))

We begin by assigning type variable to nodes:

x: t₁
y: t₂
z: t₃
(x(z))(z(x)): t₄
x(z): t₅
z(x): t₆

Then, we generate constraints:

From the node (x(z))(z(x)) we get:	t_{5}	=	(t ₆ =>	$t_4)$
From the node x(z) we get:	t_1	=	(t ₃ =>	$t_{_5})$
From the node $z(x)$ we get:	t_3	=	(t ₁ =>	$t_6)$

Then, we (try to) solve constraints:

$$t_5 = (t_6 \Rightarrow t_4)$$

 $t_1 = (t_3 \Rightarrow t_5)$
 $t_3 = (t_1 \Rightarrow t_6)$

We first eliminate t₅:

```
t_{5} = (t_{6} \Rightarrow t_{4}) 
t_{1} = (t_{3} \Rightarrow (t_{6} \Rightarrow t_{4})) 
t_{3} = (t_{1} \Rightarrow t_{6})
```

Then, we eliminate t_1 :

 $t_{5} = (t_{6} \Rightarrow t_{4})$ $t_{1} = (t_{3} \Rightarrow (t_{6} \Rightarrow t_{4}))$ $t_{3} = ((t_{3} \Rightarrow (t_{6} \Rightarrow t_{4})) \Rightarrow t_{6})$

Then, we stop due to the "occurs check" rule.

The constraints could not be solved and therefore type inference fails. The function definition can not be typed in our type system.