
Computer Language Processing - Exercise Session 7 - 2018

Exercise 1

Complete solution for the first

Long solution for ​def S(x, y, z) = (x(z))(y(z))

We begin by assigning type variable to nodes:

x: t​1
y: t​2
z: t​3
(x(z))(y(z)): t​4
x(z): t​5
y(z): t​6

Then, we generate constraints:

From the node ​(x(z))(y(z))​ we get: t​5​ = (t​6​ => t​4​)
From the node ​x(z)​ we get: t​1​ = (t​3​ => t​5​)
From the node ​y(z)​ we get: t​2​ = (t​3​ => t​6​)

Then, we solve constraints:

t​5​ = (t​6​ => t​4​)
t​1​ = (t​3​ => t​5​)
t​2​ = (t​3​ => t​6​)

We first eliminate ​t​5​ (eliminated constraints will appear in ​italics​).

t​5​ = (t​6​ => t​4​)
t​1​ = (t​3​ => (t​6​ => t​4​))
t​2​ = (t​3​ => t​6​)

Now, all rules leave the equation set untouched. We are done with constraint solving.

We therefore obtain:

def S(x: t​3​ => (t​6​ => t​4​), y: t​3​ => t​6​, z: t​3​): t​4

Which, after generalisation, leads to:

def S[A, B, C](x: A => (B => C), y: A => B, z: A): C

Computer Language Processing - Exercise Session 7 - 2018

Short solutions:

def cm[A, B, C](f: A => B, g: C => A): C => B

def cr[A, B, C](f: (A, B) => C): A => B => C

def uncr[A, B, C](f: A => B => C): ((A, B)) => C

def pr[A, B, C](x: A, y: B): (A => B => C) => C

def c1[A, B, C](p: (A => B => A) => C): C

def c2[A, B, C](p: (A => B => B) => C): C

def e[A, B, C](x: A, y: B): A

// = c1[A, B, A](pr[A, B, A](x,y))

Computer Language Processing - Exercise Session 7 - 2018

Longer solution for the last (occur check):

Long solution for ​def S(x, y, z) = (x(z))(z(x))

We begin by assigning type variable to nodes:

x: t​1
y: t​2
z: t​3
(x(z))(z(x)): t​4
x(z): t​5
z(x): t​6

Then, we generate constraints:

From the node ​(x(z))(z(x))​ we get: t​5​ = (t​6​ => t​4​)
From the node ​x(z)​ we get: t​1​ = (t​3​ => t​5​)
From the node ​z(x)​ we get: t​3​ = (t​1​ => t​6​)

Then, we (try to) solve constraints:

t​5​ = (t​6​ => t​4​)
t​1​ = (t​3​ => t​5​)
t​3​ = (t​1​ => t​6​)

We first eliminate ​t​5​:

t​5​ = (t​6​ => t​4​)
t​1​ = (t​3​ => (t​6​ => t​4​))
t​3​ = (t​1​ => t​6​)

Then, we eliminate ​t​1​:

t​5​ = (t​6​ => t​4​)
t​1​ = (t​3​ => (t​6​ => t​4​))
t​3​ = ((t​3​ => (t​6​ => t​4​)) => t​6​)

Then, we stop due to the “occurs check” rule.

The constraints could not be solved and therefore type inference fails. The function definition
can not be typed in our type system.

