
Lecture 9
How to make a sound type system



Why types are good

Prevent errors: many simple errors caught by types

Ensure memory safety or other desired properties

Document the program (purpose of parameters)

Make it easier to change

Make compilation more efficient: remove checks, specialize



An unsound (broken) type system

A type system that aims to ensure some property but, in fact,
fails.

For example: suppose we have a system that aims to ensure
that if parameter is of type Int, then it is only invoked with values
of type Int. But we find a (tricky) program that passes the type
checker and ends up invoking the function with the reference to
a string. This is unsoundness.
Sometimes unsoundness is (somewhat) intentional
compromise:

I type casts in C
I covariance for function arguments and arrays

Often unintentional (unsoundness type system bugs) due to
subtle interactions between e.g. subtyping, generics, mutation,
higher-order functions, recursion



Goal today

Define precisely a small language:
I its abstract syntax (as certain math expressions)
I its operational semantics (interpreter written in math)
I its type rules

Show that our type system prevents certain kinds of errors



Inductively defined relation: example
Define relation r ⊆ Z× Z using these inductive rules.

(0,0) ∈ r
(zero)

(x , y) ∈ r
(x , y + 1) ∈ r

(increase right)

(x , y) ∈ r
(x + 1, y + 1) ∈ r

(incease both)

(x , y) ∈ r
(x − 1, y − 1) ∈ r

(decrease both)

Which relations satisfy these rules?

I r = {(x , y) | x = 0 ∨ y = 0} ? No
I r = {(x , y) | x ≤ 0 ∧ 0 ≤ y} ? No
I r = Z× Z ? Yes

What is the smallest relation (wrt. ⊆)? r = {(x , y) | x ≤ y}
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Example derivation of (−3,−1) ∈ r

(0,0) ∈ r
(0,1) ∈ r
(0,2) ∈ r

(−1,1) ∈ r
(−2,0) ∈ r

(−3,−1) ∈ r

(0,0) ∈ r
(zero)

(x , y) ∈ r
(x , y + 1) ∈ r

(increase right)

(x , y) ∈ r
(x + 1, y + 1) ∈ r

(incease both)

(x , y) ∈ r
(x − 1, y − 1) ∈ r

(decrease both)



Proof that our rules define {(x , y) | x ≤ y}

Establish two directions:
I if there exists a derivation, then x ≤ y

Strategy: induction on derivation, go through each rule

I if x ≤ y then there exists a derivation
Strategy (problem-specific): we can find an algorithm that
given x , y finds derivation tree (what is the algorithm?)

Example: start from (0,0), then
derive (0, y − x) in y − x steps of “increase right”,
then depending on whether x < 0 or x > 0 apply “increase
both” or “decrease both” rule |x | times.
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Inductively defined relations

We can use inductive rules to define type systems, grammars,
interpreters, . . .
We define a relation r using rules of the form

t1(x̄) ∈ r , . . . , tn(x̄) ∈ r
t(x̄) ∈ r

where ti(x̄) ∈ r are assumptions and t(x̄) ∈ r is the conclusion.
When n = 0 (no assumptions), the rule is called an axiom.

A derivation tree has nodes marked by tuples t(ā) for some
specific values ā of x̄ .
We define relation r as the set of all tuples for which there
exists a derivation tree. This is the smallest relation that
satisfies the rules.



Amyrli language

Tiny language similar to one in the project.
Works only on integers and booleans.

(Initial) program is a pair (etop, ttop) where
I etop is the top-level environment mapping function names

to function definitions
I ttop is the top-level term (expression) that starts execution

Function definition for a given function name is a tuple of:
parameter list x̄ , parameter types τ̄ , expression representing
function body t , and result type τ0.

Expressions are formed by invoking primitive functions
(+,−,≤,&&), invocations of defined functions, or if
expressions.
No local val definitions nor match. e will remain fixed



Amyrli: abstract syntax of terms

t := true | false | cI | f (t1, . . . , tn) | if (t) t1 else t2

where
I cI ∈ Z denotes integer constant
I f denotes either application of a user-defined function or

one of the primitive operators



Program representation as a mathematical structure

pfact = (e, fact(2))
where e(fact) = (n, Int , if (n ≤ 1) 1 else n ∗ fact(n − 1), Int)



Operational semantics of Amyrli: if expression

We specify the result of executing the program as an inductively
defined binary (infix) relation “;” on programs.
If the top-level expression becomes a constant after some
number of steps of ;, we have computed the result: t ∗; c
Rules for if:

b ; b′

(if (b) t1 else t2) ; (if (b′) t1 else t2)

(if (true) t1 else t2) ; t1

(if (false) t1 else t2) ; t2



Operational semantics of Amyrli: primitives
Logical operators:

b1 ; b′1
(b1 && b2) ; (b′1 && b2)

(true && b2) ; b2

(false && b2) ; false

Arithmetic:
k1 ; k ′1

(k1 + k2) ; (k ′1 + k2)

k2 ; k ′2
(c + k2) ; (c + k ′2)

c ∈ Z

(c1 + c2) ; c
c1, c2, c ∈ Z, c = c1 + c2



Operational semantics: user function f

If c1, . . . , ci−1 are constants, then (as expected in call-by-value)

ti ; t ′i
f (c1, . . . , ci−1, ti , . . .) ; f (c1, . . . , ci−1, t ′i , . . .)

Let the environment e define f by e(f ) = ((x1, . . . , xn), τ̄ , tf , τ0)

I (x1, . . . , xn) is the list of formal parameters of f
I tf is the body of the function f

Then we can apply rule

f (c1, . . . , cn) ; tf [x1 := c1, . . . , xn := cn]

In general, if t is term, then t [x1 := t1, . . . , xn := tn] denotes
result of substituting (replacing) in t each variable xi by term ti .



Execution of factorial example program

pfact = (e, fact(2))
where e(fact) = (n, Int , if (n ≤ 1) 1 else n ∗ fact(n − 1), Int)

fact(2) ;

if (2 ≤ 1) 1 else 2 ∗ fact(2− 1) ;
if (false) 1 else 2 ∗ fact(2− 1) ;
2 ∗ fact(2− 1) ;
2 ∗ fact(1) ;
2 ∗ (if (1 ≤ 1) 1 else 1 ∗ fact(1− 1)) ;
2 ∗ (if (true) 1 else 1 ∗ fact(1− 1)) ;
2 ∗ 1 ;
2
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Getting stuck

If a term t makes no sense, we introduce no rule to define its
evaluation, so there is no t ′ such that t ; t ′

Example: consider this top-level expression:

if (5) 3 else 7

the expression 5 cannot be evaluated further and is a constant,
but there are no rules for when condition of if is a number
constant; there are only rules for boolean constants.

Such terms, that are not constants and have no applicable
rules, are called stuck, because no further steps are possible.

Stuck terms indicate errors. Type checking is a way to detect
them statically, without trying to (dynamically) execute a
program and see if it will get stuck or produce result.



Type Rules: Program

After the definition of operational semantics, we define type
rules (also inductively).
Given initial program (e, t) define

Γ0 = {(f , τ1 × · · · × τn → τ0) | (f , , (τ1, . . . , τn), tf , τ0) ∈ e}

We say program type checks iff:
(1) the top-level expression type checks:

Γ0 ` t : τ

and
(2) each function body type checks:

Γ0 ⊕ {(x1, τ1), . . . , (xn, τn)} ` tf : τ0

for each (f , (x1, . . . , xn), (τ1, . . . , τn), tf , τ0) ∈ e



Type Rules are as Usual

Γ ` b : Bool , Γ ` t1 : τ, Γ ` t2 : τ

Γ ` (if (b) t1 else t2) : τ

Γ ` f : τ1 × · · · × τn → τ0, Γ ` t1 : τ1, . . . , Γ ` tn : τn

Γ ` f (t1, . . . , tn) : τ0

We treat primitives like applications of functions e.g.
+ : Int × Int → Int
≤ : Int × Int → Bool
&& : Bool × Bool → Bool



Soundness through progress and preservation
Soundness theorem: if a program type checks, then its
evaluation does not get stuck.
Proof uses the following two lemmas, which is a common
approach:

I progress: if a program type checks, it is not stuck: if

Γ ` t : τ

then either t is a constant or there exists t ′ such that t ; t ′

I preservation: if a program type checks and makes one ;
step, the result again type checks
here: type checks and has the same type: if

Γ ` t : τ

and t ; t ′ then
Γ ` t ′ : τ



Proof of progress and preservation - case of if
We prove conjunction of progress and preservation by induction
on term t such that Γ ` t : τ . The operational semantics defines
the non-error cases of an interpreter, which enables case
analysis. Consider if. By type checking rules, if can only type
check if its condition b type checks and has type Bool. By
inductive hypothesis and progress either b is constant or it can
be reduced to b′. If it is constant one of these rules apply:

(if (true) t1 else t2) ; t1

(if (false) t1 else t2) ; t2
and the result, by type rule for if, has type τ . If b′ is not
constant and the assumption of the rule

b ; b′

(if (b) t1 else t2) ; (if (b′) t1 else t2)

applies so t also makes progress. Moreover, by preservation b′

also has type Bool, so the entire expression can be typed as τ
by re-using the type derivations for t1 and t2.



Progress and preservation - user defined functions

Following the cases of operational semantics, either all
arguments of a function have been evaluated to a constant, or
some are not yet constant.
If they are not all constants, the case is as for the condition of
if, and we establish progress and preservation analogously.
Otherwise rule

f (c1, . . . , cn) ; tf [x1 := c1, . . . , xn := cn]

applies, so progress is ensured. For preservation, we need to
show

Γ ` tf [x1 := c1, . . . , xn := cn] : τ (∗)

where e(f ) = ((x1, . . . , xn), (τ1, . . . , τn), tf , τ0) and tf is the body
of f . According to type rules τ = τ0 and Γ ` ci : τi .



Progress and preservation - substitution and types

Function f definition type checks, so Γ′ ` tf : τ0 where
Γ′ = Γ⊕ {(x1, τ1), . . . , (xn, τn)}.
Consider the type derivation tree for tf and replace each use of
Γ′ ` xi : τi with Γ ` ci : τi . The result is a type derivation for (∗):

Γ ` tf [x1 := c1, . . . , xn := cn] : τ (∗)

Therefore, the preservation holds in this case as well.

Exercise: prove the above step that replacing variables with
constants of the same type transforms term that has type
derivation with type τ into a term that again has a derivation
with type τ . Is there a more general statement?
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