
Two Steps in the Algorithm to Parse
Arbitrary Context-Free Grammars

1) Transform grammar to normal form
called Chomsky Normal Form

TODAY

2) Parse input using transformed grammar
dynamic programming algorithm

SEEN LAST WEEK

Conversion to Chomsky Normal Form
(CNF)

Steps: (not in the optimal order)
–remove unproductive symbols
–remove unreachable symbols
–remove epsilons (no non-start nullable symbols)
–remove single non-terminal productions

(unit productions) X::=Y
–reduce arity of every production to less than two
–make terminals occur alone on right-hand side

1) Unproductive non-terminals

What is funny about this grammar:
 stmt ::= identifier := identifier
 | while (expr) stmt
 | if (expr) stmt else stmt
 expr ::= term + term | term – term
 term ::= factor * factor
 factor ::= (expr)

There is no derivation of a sequence of tokens from expr

In every step will have at least one expr, term, or factor

If it cannot derive sequence of tokens we call it unproductive

1) Unproductive non-terminals

Productive symbols are obtained using these
two rules (what remains is unproductive)

–Terminals are productive
–If X::= s1 s2 … sn is a rule and each si is productive
then X is productive

Delete unproductive
symbols.

The language recognized by the
grammar will not change

2) Unreachable non-terminals

What is funny about this grammar with start
symbol ‘program’
 program ::= stmt | stmt program
 stmt ::= assignment | whileStmt
 assignment ::= expr = expr
 ifStmt ::= if (expr) stmt else stmt
 whileStmt ::= while (expr) stmt
 expr ::= identifier

No way to reach symbol ‘ifStmt’ from ‘program’

Can we formulate rules for reachable symbols ?

2) Unreachable non-terminals

Reachable terminals are obtained using the
following rules (the rest are unreachable)

–starting non-terminal is reachable (program)
–If X::= s1 s2 … sn is rule and

Delete unreachable nonterminals and their
productions

X is reachable then

every non-terminal in s1 s2 … sn is reachable

3) Removing Empty Strings

Ensure only top-level symbol can be nullable

 program ::= stmtSeq
 stmtSeq ::= stmt | stmt ; stmtSeq
 stmt ::= “” | assignment | whileStmt | blockStmt
 blockStmt ::= { stmtSeq }
 assignment ::= expr = expr
 whileStmt ::= while (expr) stmt
 expr ::= identifier

How to do it in this example?

3) Removing Empty Strings - Result

 program ::= “” | stmtSeq
 stmtSeq ::= stmt| stmt ; stmtSeq |
 | ; stmtSeq | stmt ; | ;
 stmt ::= assignment | whileStmt | blockStmt
 blockStmt ::= { stmtSeq } | { }
 assignment ::= expr = expr
 whileStmt ::= while (expr) stmt
 whileStmt ::= while (expr)
 expr ::= identifier

3) Removing Empty Strings - Algorithm

3) Removing Empty Strings

• Since stmtSeq is nullable, the rule
 blockStmt ::= { stmtSeq }
gives
 blockStmt ::= { stmtSeq } | { }

• Since stmtSeq and stmt are nullable, the rule
 stmtSeq ::= stmt | stmt ; stmtSeq
gives
 stmtSeq ::= stmt | stmt ; stmtSeq

 | ; stmtSeq | stmt ; | ;

4) Eliminating unit productions

• Single production is of the form
X ::=Y

where X,Y are non-terminals
 program ::= stmtSeq
 stmtSeq ::= stmt
 | stmt ; stmtSeq
 stmt ::= assignment | whileStmt
 assignment ::= expr = expr
 whileStmt ::= while (expr) stmt

4) Unit Production Elimination
Algorithm

• If there is a unit production
X ::=Y put an edge (X,Y) into graph

• If there is a path from X to Z in the graph, and
there is rule Z ::= s1 s2 … sn then add rule

X ::= s1 s2 … sn

At the end, remove all unit productions.

4) Eliminate unit productions - Result

 program ::= expr = expr | while (expr) stmt
 | stmt ; stmtSeq
 stmtSeq ::= expr = expr | while (expr) stmt
 | stmt ; stmtSeq
 stmt ::= expr = expr | while (expr) stmt
 assignment ::= expr = expr
 whileStmt ::= while (expr) stmt

5) Reducing Arity:
No more than 2 symbols on RHS

stmt ::= while (expr) stmt
becomes

stmt ::= while stmt1

stmt1 ::= (stmt2

stmt2 ::= expr stmt3

stmt3 ::=) stmt

6) A non-terminal for each terminal

stmt ::= while (expr) stmt
becomes

stmt ::= Nwhile stmt1

stmt1 ::= N(stmt2

stmt2 ::= expr stmt3

stmt3 ::= N) stmt
Nwhile ::= while
N(::= (
N) ::=)

Order of steps in conversion to CNF
1. remove unproductive symbols (optional)
2. remove unreachable symbols (optional)
3. make terminals occur alone on right-hand side
4. Reduce arity of every production to <= 2
5. remove epsilons
6. remove unit productions X::=Y
7. unproductive symbols
8. unreachable symbols
– What if we swap the steps 4 and 5 ?

• Potentially exponential blow-up in the # of productions

Ordering of
Unreachable / Unproductive symbols

S := B C | “”
C := D
D := a
R := r

First Unreachable then Unproductive

S := “”
C := D
D := a

S := B C | “”
C := D
D := a

S := B C | “”
C := D
D := C
R := r

First Unproductive then Unreachable

S := “”S := “”
C := D
D := a
R := r

Alternative to Chomsky form

We need not go all the way to Chomsky form
it is possible to directly parse arbitrary grammar

Key steps: (not in the optimal order)
– reduce arity of every production to less than two

(otherwise, worse than cubic in string input size)
Can be less efficient in grammar size, but still works

More algorithms for arbitrary grammars are variations:
Earley’s parsing algorithm (Earley, CACM 1970)

 GLR parsing algorithm (Lang, ICALP 1974, Deterministic
Techniques for Efficient Non-Deterministic Parsers)
 GLL algorithm

Compiler
(scalac, gcc)

Compiler
(scalac, gcc)

Id3 = 0
while (id3 < 10) {
 println(“”,id3);
 id3 = id3 + 1 }

Id3 = 0
while (id3 < 10) {
 println(“”,id3);
 id3 = id3 + 1 }

source code: sequence of characters

i
d
3

=

0
LF
w

i
d
3

=

0
LF
w

id3
=
0

while
(

id3
<

10
)

id3
=
0

while
(

id3
<

10
)

lexer

characters words
(tokens)

trees

parser

assign

while

var id3: Int

+

* 3
7 i

assign
a[i]

<
id3 10

making sense of trees;
converting them into graphs:

connect identifier uses and declarations

Name Analysis:

after each analysis the compiler has a
better “understanding” of the input program;
can report more subtle errors

Reporting Errors

Errors Detected So Far

• File input: file does not exist
• Lexer: unknown token, string not closed

before end of file, …
• Parser: syntax error - unexpected token,

cannot parse given non-terminal
• Name analyzer: unknown identifier
• Type analyzer:

applying function to arguments of wrong type
• Data-flow analyzer:

variable read before written, division by zero

Name Analysis Problems Reported: 1
• a class is defined more than once:

class A { ...} class B { ... } class A { ... }
• a variable is defined more than once:

int x; int y; int x;
• a class member is overriden without override keyword:

class A { int x; ... } class B extends A { int x; ... }
• a method is overloaded (forbidden in Tool):

class A { def f(B x) {} def f(C x) {} ... }
• a method argument is shadowed by a local variable declaration

(forbidden in Java, Tool):
def (x:Int) { var x : Int; ...}

• two method arguments have the same name:
def (x:Int,y:Int,x:Int) { ... }

http://lara.epfl.ch/w/cc10:tool

Name Analysis Problems Reported: 2
• a class name is used as a symbol (as parent class or type, for instance)

but is not declared:
class A extends Objekt {}

• an identifier is used as a variable but is not declared:
def(amount:Int) { total = total + ammount }

• the inheritance graph has a cycle:
class A extends B {}
class B extends C {}
class C extends A

To make it efficient and clean to check for such errors, we associate
mapping from each identifier to the symbol that the identifier
represents.
• We use Map data structures to maintain this mapping
• The rules that specify how declarations are used to construct such

maps are given by scoping rules of the programming language.

Storing and Using Tree Positions

Showing Good Errors with Syntax Trees
Suppose we have undeclared variable ‘i’ in a program of 100K lines
Which error message would you prefer to see from the compiler?

– An ocurrence of variable ‘i’ not declared (which variable? where?)
– An ocurrence of variable ‘i’ in procedure P not declared
– Variable ‘i’ undeclared at line 514, position 12 (and IDE points you there)

How to emit this error message if we only have a syntax trees?
• Abstract syntax tree nodes store positions within file
• For identifier nodes: allows reporting variable uses

– Variable 'i' in line 11, column 5 undeclared
• For other nodes, supports useful for type errors, e.g. could report

for (x + y) * (!ok)
– Type error in line 13,
– expression in line 13, column 11-15, has type Bool, expected Int instead

Showing Good Errors with Syntax Trees
Constructing trees with positions:

– Lexer records positions for tokens
– Each subtree in AST corresponds to some parse tree,

so it has first and last token
– Get positions from those tokens
– Save these positions in the constructed tree

What is important is to save information for leaves
– information for other nodes can often be

approximated using information in the leaves

Continuing Name Analysis:

Scope of Identifiers

Example: find program result, symbols, scopes
class Example {
 boolean x;
 int y;
 int z;
 int compute(int x, int y) {

int z = 3;
return x + y + z;

 }
 public void main() {

int res;
x = true;
y = 10;
z = 17;
res = compute(z, z+1);
System.out.println(res);

 }
}

Scope of a variable = part of the program where it is visible

Draw an arrow from occurrence of
each identifier to the point of its
declaration.

Name analysis:
• computes those arrows

= maps, partial functions (math)
= environments (PL theory)
= symbol table (implementation)

• report some simple semantic errors

We usually introduce symbols for things
denoted by identifiers.
Symbol tables map identifiers to symbols.

For each declaration of identifier,
identify where the identifier can be
referred to (its scope).

Usual static scoping: What is the result?
class World {
 int sum;
 int value;
 void add() {
 sum = sum + value;
 value = 0;
 }
 void main() {
 sum = 0;
 value = 10;
 add();
 if (sum % 3 == 1) {
 int value;
 value = 1;
 add();
 print("inner value = ", value);
 print("sum = ", sum);
 }
 print("outer value = ", value);
 }
}

Identifier refers to the symbol that
was declared “closest” to the place
in program structure (thus "static").

We will assume static scoping
unless otherwise specified.

1
10

0

Renaming Statically Scoped Program
class World {
 int sum;
 int value;
 void add(int foo) {
 sum = sum + value;
 value = 0;
 }
 void main() {
 sum = 0;
 value = 10;
 add();
 if (sum % 3 == 1) {
 int value1;
 value1 = 1;
 add(); // cannot change value1
 print("inner value = ", value1);
 print("sum = ", sum);
 }
 print("outer value = ", value);
 }
}

Identifier refers to the symbol that
was declared “closest” to the place
in program structure (thus "static").

We will assume static scoping
unless otherwise specified.

Property of static scoping:
Given the entire program, we can
rename variables to avoid any
shadowing (make all vars unique!)

1
10

0

Dynamic scoping: What is the result?
class World {
 int sum;
 int value;
 void add() {
 sum = sum + value;
 value = 0;
 }
 void main() {
 sum = 0;
 value = 10;
 add();
 if (sum % 3 == 1) {
 int value;
 value = 1;
 add();
 print("inner value = ", value);
 print("sum = ", sum);
 }
 print("outer value = ", value);
 }
}

Symbol refers to the variable that
was most recently declared within
program execution.

Views variable declarations as
executable statements that
establish which symbol is
considered to be the ‘current one’.
(Used in old LISP interpreters.)

Translation to normal code: access
through a dynamic environment.

0
11

0

Dynamic scoping translated
using global map, working like stack

class World {
 int sum;
 int value;
 void add() {
 sum = sum + value;
 value = 0;
 }
 void main() {
 sum = 0;
 value = 10;
 add();
 if (sum % 3 == 1) {
 int value;
 value = 1;
 add();
 print("inner value = ", value);
 print("sum = ", sum);
 }
 print("outer value = ", value);
 }
}

0
11

0

class World {
 pushNewDeclaration('sum);
 pushNewDeclaration('value);
 void add(int foo) {
 update('sum, lookup('sum) + lookup('value));
 update('value, 0);
 }
 void main() {
 update('sum, 0);
 update('value,10);
 add();
 if (lookup('sum) % 3 == 1) {
 pushNewDeclaration('value);
 update('value, 1);
 add();
 print("inner value = ", lookup('value));
 print("sum = ", lookup('sum));
 popDeclaration('value)
 }
 print("outer value = ", lookup('value));
 }
}Object-oriented programming has scope for each

object, so we have a nice controlled alternative to dynamic scoping (objects give names to scopes).

Good Practice for Scoping
• Static scoping is almost universally accepted in

modern programming language design
• It is the approach that is usually easier to reason

about and easier to compile, since we do not
have names at compile time and compile each
code piece separately

• Still, various ad-hoc language designs emerge
and become successful
– LISP implementations took dynamic scoping since it

was simpler to implement for higher-order functions
– Javascript

JavaScript

var fs = [];
for(var i = 0; i < 5; i++) {
 var c = i;
 fs.push(function() {
 console.log(c);
 });
}
for(var j = 0; j < 5; j++) {
 fs[j]();
}

can you guess what it will output?

class World {
 int sum; int value;
 // value  int, sum  int
 void add(int foo) {
 // foo  int, value  int, sum  int
 string z;
 // z  string, foo  int, value  int, sum  int
 sum = sum + value; value = 0;
 }
 // value  int, sum  int
 void main(string bar) {
 // bar  string, value  int, sum  int
 int y;
 // y  int, bar  string, value  int, sum  int
 sum = 0;
 value = 10;
 add();
 // y  int, bar  string, value  int, sum  int
 if (sum % 3 == 1) {
 string value;
 // value  string, y  int, bar  string, sum  int
 value = 1;
 add();
 print("inner value = ", value);
 print("sum = ", sum); }
 // y  int, bar  string, value  int, sum  int
 print("outer value = ", value);
} }

Outer declaration
int value is shadowed by
inner declaration string value

Map becomes bigger as
we enter more scopes,
later becomes smaller again
Imperatively: need to make
maps bigger, later smaller again.
Functionally: immutable maps,
keep old versions.

How the symbol map
changes in case of
static scoping

