
Expressive Power of Automata

For which of the following languages can you
find an automaton or regular expression:
– Sequence of open or closed parentheses of even

length? E.g. (), ((,)),)()))(, …
– as many digits before as after decimal point?
– Sequence of balanced parentheses

((()) ()) - balanced
 ()) (() - not balanced

– Comments from // until LF
– Nested comments like /* ... /* */ … */

Expressive Power of Automata

For which of the following languages can you
find an automaton or regular expression:
– Sequence of open or closed parentheses of even

length? E.g. (), ((,)),)()))(, …
– as many digits before as after decimal point?
– Sequence of balanced parentheses

((()) ()) - balanced
 ()) (() - not balanced

– Comments from // until LF
– Nested comments like /* ... /* */ … */

yes

No

No

Yes

No

Automaton that Claims to Recognize
{ anbn | n >= 0 }

Make the automaton deterministic
Let the resulting DFA have K states, |Q|=K
Feed it a, aa, aaa, …. Let qi be state after reading ai

 q0 , q1 , q2 , ... , qK

This sequence has length K+1 -> a state must repeat
 qi = qi+p p > 0

Then the automaton should accept ai+pbi+p .
But then it must also accept

ai bi+p
because it is in state after reading ai as after ai+p.
So it does not accept the given language.

Limitations of Regular Languages

• Every automaton can be made deterministic
• Automaton has finite memory, cannot count
• Deterministic automaton from a given state

behaves always the same
• If a string is too long, deterministic automaton

will repeat its behavior

Pumping Lemma

If L is a regular language, then there exists a
positive integer p (the pumping length) such that
every string s ∈ L for which |s| ≥ p, can be
partitioned into three pieces, s = x y z, such that
• |y| > 0
• |xy| ≤ p
• ∀i ≥ 0. xyiz L∈

Let’s try again: { anbn | n >= 0 }

Finite State Automata are Limited

Let us use (context-free) grammars!

Context Free Grammar for anbn

S ::= ε - first rule of this grammar
S ::= a S b - second rule of this grammar.
Example of a derivation (DEMO)
 S => aSb => a aSb b => aa aSb bb => aaabbb
Parse tree: leaves give us the result

Context-Free Grammars
G = (A, N, S, R)
• A - terminals (alphabet for generated words w A*)∈
• N - non-terminals – symbols with (recursive) definitions
• Grammar rules in R are pairs (n,v), written

 n ::= v where
n N is a non-terminal∈
v (A U N)* - ∈ sequence of terminals and non-terminals

A derivation in G starts from the starting symbol S
• Each step replaces a non-terminal with one of its right

hand sides
Example from before: G = ({a,b}, {S}, S, {(S,ε), (S,aSb)})

Parse Tree
Given a grammar G = (A, N, S, R), t is a parse tree of G
iff t is a node-labelled tree with ordered children that satisfies:
• root is labeled by S
• leaves are labelled by elements of A
• each non-leaf node is labelled by an element of N
• for each non-leaf node labelled by n whose children left to right

are labelled by p1…pn, we have a rule (n::= p1…pn) R∈

Yield of a parse tree t is the unique word in A* obtained by reading
the leaves of t from left to right
Language of a grammar G = words of all yields of parse trees of G
L(G) = {yield(t) | isParseTree(G,t)}
w L(G) t. w=yield(t) isParseTree(G,t)∈ ⇔ ∃ ∧
isParseTree - easy to check condition, given t
Harder: know if for a word there exists a parse tree

Grammar Derivation
A derivation for G is any sequence of words pi (A U N)*,∈ whose:
• first word is S
• each subsequent word is obtained from the previous one by

replacing one of its letters by right-hand side of a rule in R :
pi = unv , (n::=q) R, ∈
pi+1 = uqv

• Last word has only letters from A
Each parse tree of a grammar has one or more derivations, which
result in expanding tree gradually from S
• Different orders of expanding non-terminals may generate the

same tree
• Leftmost derivation: always expands leftmost non-terminal

•Rightmost derivation: always expands rightmost non-terminal

Remark

We abbreviate
S ::= p
S ::= q

as
S ::= p | q

Example: Parse Tree vs Derivation
Consider this grammar G = ({a,b}, {S,P,Q}, S, R) where R is:
S ::= PQ
P ::= a | aP
Q ::= ε | aQb
Show a derivation tree for aaaabb
Show at least two derivations that correspond to that tree.

Balanced Parentheses Grammar

Consider the language L consisting of precisely those
words consisting of parentheses “(“ and “)” that are
balanced (each parenthesis has the matching one)
• Example sequence of parentheses

((()) ()) - balanced, belongs to the language

 ()) (() - not balanced, does not belong

Exercise: give the grammar and example derivation for
the first string.

Balanced Parentheses Grammar

G1 S ::= ε | S(S)S
G2 S ::= ε | (S)S
G3 S ::= ε | S(S)
G4 S ::= ε | S S | (S)

These all define the same language, the language
of balanced parentheses.

Parse Trees and Syntax Trees

Id3 = 0
while (id3 < 10) {
 println(“”,id3);
 id3 = id3 + 1 }

source code

i
d
3

=

0
LF
w

id3
=
0

while
(

id3
<

10
)

lexer

characters words
(tokens) trees

parser

assign

while

i 0

+

* 3
7 i

assign
a[i]

<
i 10

Compiler

While Language Syntax

This syntax is given by a context-free grammar:
program ::= statmt*
statmt ::= println(stringConst , ident)
 | ident = expr
 | if (expr) statmt (else statmt)?

 | while (expr) statmt
 | { statmt* }
expr ::= intLiteral | ident
 | expr (&& | < | == | + | - | * | / | %) expr
 | ! expr | - expr

Parse Tree vs Abstract Syntax Tree (AST)

while (x > 0) x = x - 1

Pretty printer: takes abstract syntax tree (AST) and outputs the
leaves of one possible (concrete) parse tree.

parse(prettyPrint(ast)) ≈ ast

Parse Tree vs Abstract Syntax Tree (AST)
• Each node in parse tree has children corresponding

precisely to right-hand side of grammar rules. The
definition of parse trees is fixed given the grammar
– Often compiler never actually builds parse trees in memory,

(but in our labs we will have explicit parse trees)
• Nodes in abstract syntax tree (AST) contain only useful

information and usually omit the punctuation signs.
We can choose our own syntax trees, to make it
convenient for both construction in parsing and for
later stages of our compiler or interpreter
– A compiler often directly builds AST

Abstract Syntax Trees for Statements
statmt ::= println (stringConst , ident)
 | ident = expr
 | if (expr) statmt (else statmt)?

 | while (expr) statmt
 | { statmt* }

abstract class Statmt
case class PrintlnS(msg : String, var : Identifier) extends Statmt
case class Assignment(left : Identifier, right : Expr) extends Statmt
case class If(cond : Expr, trueBr : Statmt,
 falseBr : Option[Statmt]) extends Statmt
case class While(cond : Expr, body : Expr) extends Statmt
case class Block(sts : List[Statmt]) extends Statmt

grammar:

AST classes:

Abstract Syntax Trees for Statements
statmt ::= println (stringConst , ident)
 | ident = expr
 | if (expr) statmt (else statmt)?

 | while (expr) statmt
 | { statmt* }

abstract class Statmt
case class PrintlnS(msg : String, var : Identifier) extends Statmt
case class Assignment(left : Identifier, right : Expr) extends Statmt
case class If(cond : Expr, trueBr : Statmt,
 falseBr : Option[Statmt]) extends Statmt
case class While(cond : Expr, body : Statmt) extends Statmt
case class Block(sts : List[Statmt]) extends Statmt

While Language with Simple Expressions

expr ::= intLiteral | ident
 | expr (+ | /) expr

statmt ::=
 println (stringConst , ident)
 | ident = expr
 | if (expr) statmt (else statmt)?

 | while (expr) statmt
 | { statmt* }

Abstract Syntax Trees for Expressions

abstract class Expr
case class IntLiteral(x : Int) extends Expr
case class Variable(id : Identifier) extends Expr
case class Plus(e1 : Expr, e2 : Expr) extends Expr
case class Divide(e1 : Expr, e2 : Expr) extends Expr

expr ::= intLiteral | ident
 | expr + expr | expr / expr

foo + 42 / bar + arg

Ambiguous Grammars
expr ::= intLiteral | ident
 | expr + expr | expr / expr

ident + intLiteral / ident + ident

Ambiguous grammar: if some token
sequence has multiple parse trees
(then it is has multiple abstract trees).

Each node in parse tree is given by
one grammar alternative.

Making Grammar Unambiguous
and Constructing Correct Trees

Introduction to LL(1) Parsing

Ambiguous Expression Grammar
expr ::= intLiteral | ident
 | expr + expr | expr / expr

has two parse trees, one suggested by
ident + intLiteral / ident

and one by
ident + intLiteral / ident

Example input:
ident + intLiteral / ident

Suppose Division Binds Stronger
expr ::= intLiteral | ident
 | expr + expr | expr / expr

has two parse trees, one suggested by
ident + intLiteral / ident

and one by a bad tree
ident + intLiteral / ident

We do not want arguments of / expanding into
expressions with + as the top level.

Example input:
ident + intLiteral / ident

Layering the Grammar by Priorities
expr ::= intLiteral | ident
 | expr + expr | expr / expr

is transformed into a new grammar:
expr ::= expr + expr | divExpr
divExpr ::= intLiteral | ident
 | divExpr / divExpr

The bad tree
ident + intLiteral / ident

cannot be derived in the new grammar.
New grammar: same language, fewer parse trees!

Left Associativity of /
expr ::= expr + expr | divExpr
divExpr ::= intLiteral | ident
 | divExpr / divExpr

Example input:
ident / intLiteral / ident x/9/z

has two parse trees, one suggested by
ident / intLiteral / ident (x/9)/z

and one by a bad tree
ident / intLiteral / ident x/(9/z)

We do not want RIGHT argument of / expanding
into expression with / as the top level.

Left Associativity - Left Recursion
expr ::= expr + expr | divExpr
divExpr ::= intLiteral | ident
 | divExpr / divExpr

No bad / trees
Still bad + trees

expr ::= expr + expr | divExpr
divExpr ::= divExpr / factor
 | factor
factor ::= intLiteral | ident

expr ::= expr + divExpr | divExpr
divExpr ::= factor | divExpr / factor
factor ::= intLiteral | ident

No bad trees.
Left recursive!

Left vs Right Associativity

expr ::= expr + divExpr | divExpr
divExpr ::= factor | divExpr / factor
factor ::= intLiteral | ident

Left associative
Left recursive,
so not LL(1).

expr ::= divExpr + expr | divExpr
divExpr ::= factor | factor / divExpr
factor ::= intLiteral | ident

Unique trees.
Associativity wrong.
No left recursion.

expr ::= divExpr exprSeq
exprSeq ::= + expr | ε
divExpr ::= factor divExprSeq
divExprSeq ::= / divExpr | ε
factor ::= intLiteral | ident

Unique trees.
Associativity wrong.
LL(1): easy to pick an
alternative to use.

Our Approach

expr ::= divExpr exprSeq
exprSeq ::= + expr | ε
divExpr ::= factor divExprSeq
divExprSeq ::= / divExpr | ε
factor ::= intLiteral | ident

initial grammar,
priorities: / +

expr ::= intLiteral | ident
 | expr + expr | expr / expr

LL(1) grammar
encoding priorities

LL(1) parser
tokens
from
lexer

parse tree, all
right associative AST

change right into left
associativity,

abstract

Approach on an Example
expr ::= divExpr exprSeq
exprSeq ::= + expr | ε
divExpr ::= factor divExprSeq
divExprSeq ::= / divExpr | ε
factor ::= a | b | c | d

LL(1) grammar
encoding priorities

LL(1) parser
tokens
from
lexer

parse tree, all
right associative AST

change right into left
associativity,

abstract

a + b / c + d expr
divExpr exprSeq
factor divExprSeq + expr
a divExpr exprSeq
 factor divExprSeq + expr

 b / divExpr divExpr divExprSeq
 factor divExprSeq factor
 c d

Right Associative Parse Trees into
Left Associative Abstract Syntax Tree

 expr
divExpr exprSeq
factor divExprSeq + expr
a divExpr exprSeq
 factor divExprSeq + expr

 b / divExpr divExpr divExprSeq
 factor divExprSeq factor
 c d

+

+
/

a b c

d

left associative right associative

+
+

/
a

b c

d

correct

easy,
wrong

Exercise: Unary Minus
1) Show that the grammar

A ::= − A
A ::= A − id
A ::= id

is ambiguous by finding a string that has two different parse
trees. Show those parse trees.
2) Make two different unambiguous grammars for the same
language:
 a) One where prefix minus binds stronger than infix minus.
 b) One where infix minus binds stronger than prefix minus.
3) Show the syntax trees using the new grammars for the
string you used to prove the original grammar ambiguous.
4) Give a regular expression describing the same language.

Unary Minus Solution Sketch
1) An example of a string with two parse trees is

- id - id
The two parse trees are generated by these imaginary parentheses (shown
red): -(id-id) (-id)-id
and can generated by these derivations that give different parse trees

A => -A => - A - id => - id - id
A => A - id => - A - id => - id - id

2) a) prefix minus binds stronger:
A ::= B | A - id B ::= -B | id

 b) infix minus binds stronger
A ::= C | -A C ::= id | C - id

3) in two trees that used to be ambiguous instead of some A’s we have B’s in
a) grammar or C’s in b) grammar.

4) -*id(-id)*

Recursive Descent
LL(1) Parsing

- useful parsing technique
- to make it work, we might need to transform the grammar

Recursive Descent is Decent

Recursive descent is a decent parsing technique
– can be easily implemented manually based on the

grammar (which may require transformation)
– efficient (linear) in the size of the token sequence

Correspondence between grammar and code
– concatenation → ;
– alternative (|) → if
– repetition (*) → while
– nonterminal → recursive procedure

A Rule of While Language Syntax

// Where things work very nicely for recursive descent!

statmt ::=
 println (stringConst , ident)
 | ident = expr
 | if (expr) statmt (else statmt)?

 | while (expr) statmt
 | { statmt* }

Parser for the statmt (rule -> code)
def skip(t : Token) = if (lexer.token == t) lexer.next
 else error(“Expected”+ t)
def statmt = {
 if (lexer.token == Println) { lexer.next;
 skip(openParen); skip(stringConst); skip(comma);
 skip(identifier); skip(closedParen)
 } else if (lexer.token == Ident) { lexer.next;
 skip(equality); expr
 } else if (lexer.token == ifKeyword) { lexer.next;
 skip(openParen); expr; skip(closedParen); statmt;
 if (lexer.token == elseKeyword) { lexer.next; statmt }
 // | while (expr) statmt

Continuing Parser for the Rule

 // | while (expr) statmt

 // | { statmt* }

 } else if (lexer.token == whileKeyword) { lexer.next;
 skip(openParen); expr; skip(closedParen); statmt

 } else if (lexer.token == openBrace) { lexer.next;
 while (isFirstOfStatmt) { statmt }
 skip(closedBrace)

 } else { error(“Unknown statement, found token ” +
 lexer.token) }

How to construct if conditions?
statmt ::= println (stringConst , ident)
 | if (expr) statmt (else statmt)?

 | while (expr) statmt

• Look what each alternative starts with to decide what to parse
• Here: we have terminals at the beginning of each alternative
• More generally, we have ‘first’ computation, as for regular

expressions
• Consider a grammar G and non-terminal N
LG(N) = { set of strings that N can derive }

e.g. L(statmt) – all statements of while language
first(N) = { a | aw in LG(N), a – terminal, w – string of terminals}

first(statmt) = { println, ident, if, while, { }
first(while (expr) statmt) = { while } - we will give an algorithm

Formalizing and Automating
Recursive Descent: LL(1) Parsers

Task: Rewrite Grammar to make it
suitable for recursive descent parser

• Assume the priorities of operators as in Java

expr ::= expr (+|-|*|/) expr
 | name | `(’ expr `)’
name ::= ident

Grammar vs Recursive Descent Parser
expr ::= term termList
termList ::= + term termList
 | - term termList

 | ε
term ::= factor factorList
factorList ::= * factor factorList
 | / factor factorList
 | ε
factor ::= name | (expr)
name ::= ident

def expr = { term; termList }
def termList =
 if (token==PLUS) {
 skip(PLUS); term; termList
 } else if (token==MINUS)
 skip(MINUS); term; termList
 }
def term = { factor; factorList }
...
def factor =
 if (token==IDENT) name
 else if (token==OPAR) {
 skip(OPAR); expr; skip(CPAR)
 } else error("expected ident or)")

Note that the abstract trees we would
create in this example do not strictly
follow parse trees.

Rough General Idea

A ::= B1 ... Bp

 | C1 ... Cq

 | D1 ... Dr

def A =
 if (token ∈ T1) {
 B1 ... Bp

 else if (token ∈ T2) {
 C1 ... Cq

 } else if (token ∈ T3) {
 D1 ... Dr

 } else error("expected T1,T2,T3")where:
T1 = first(B1 ... Bp)
T2 = first(C1 ... Cq)
T3 = first(D1 ... Dr)

first(B1 ... Bp) = {a Σ∈ | B1...Bp ⇒... ⇒ aw }

T1, T2, T3 should be disjoint sets of tokens.

Computing first in the example

expr ::= term termList
termList ::= + term termList
 | - term termList

 | ε
term ::= factor factorList
factorList ::= * factor factorList
 | / factor factorList
 | ε
factor ::= name | (expr)
name ::= ident

first(name) = {ident}
first((expr)) = { (}
first(factor) = first(name)
 U first((expr))
 = {ident} U{ (}
 = {ident, (}
first(* factor factorList) = { * }
first(/ factor factorList) = { / }
first(factorList) = { *, / }
first(term) = first(factor) = {ident, (}
first(termList) = { + , - }
first(expr) = first(term) = {ident, (}

Algorithm for first: Goal

Given an arbitrary context-free grammar with a
set of rules of the form X ::= Y1 ... Yn compute
first for each right-hand side and for each
symbol.
How to handle
• alternatives for one non-terminal
• sequences of symbols
• nullable non-terminals
• recursion

Rules with Multiple Alternatives

A ::= B1 ... Bp

 | C1 ... Cq

 | D1 ... Dr

first(A) = first(B1... Bp)
 U first(C1 ... Cq)
 U first(D1 ... Dr)

Sequences
first(B1... Bp) = first(B1) if not nullable(B1)

first(B1... Bp) = first(B1) U ... U first(Bk)

if nullable(B1), ..., nullable(Bk-1) and

not nullable(Bk) or k=p

Abstracting into Constraints

expr ::= term termList
termList ::= + term termList
 | - term termList

 | ε
term ::= factor factorList
factorList ::= * factor factorList
 | / factor factorList
 | ε
factor ::= name | (expr)
name ::= ident

expr' = term'
termList' = {+}
 U {-}

term' = factor'
factorList' = {*}
 U { / }

factor' = name' U { (}
name' = { ident }

recursive grammar: constraints over finite sets: expr' is first(expr)

nullable: termList, factorList For this nice grammar, there is
no recursion in constraints.
Solve by substitution.

Example to Generate Constraints

S ::= X | Y
X ::= b | S Y
Y ::= Z X b | Y b
Z ::= ε | a

S' = X' U Y'
X' =

reachable (from S):
productive:
nullable:

terminals: a,b
non-terminals: S, X, Y, Z

First sets of terminals:
 S', X', Y', Z' {a,b}⊆

Example to Generate Constraints

S ::= X | Y
X ::= b | S Y
Y ::= Z X b | Y b
Z ::= ε | a

S' = X' U Y'
X' = {b} U S'
Y' = Z' U X' U Y'
Z' = {a}

reachable (from S): S, X, Y, Z
productive: X, Z, S, Y
nullable: Z

terminals: a,b
non-terminals: S, X, Y, Z

These constraints are recursive.
How to solve them?

S', X', Y', Z' {a,b}⊆
How many candidate solutions
• in this case?
• for k tokens, n nonterminals?

Iterative Solution of first Constraints
 S' X' Y' Z'
 {} {} {} {}
 {} {b} {b} {a}
 {b} {b} {a,b} {a}
{a,b} {a,b} {a,b} {a}
{a,b} {a,b} {a,b} {a}

S' = X' U Y'
X' = {b} U S'
Y' = Z' U X' U Y'
Z' = {a}

• Start from all sets empty.
• Evaluate right-hand side and

assign it to left-hand side.
• Repeat until it stabilizes.

1.
2.
3.
4.
5.

Sets grow in each step
• initially they are empty, so they can only grow
• if sets grow, the RHS grows (U is monotonic), and so does LHS
• they cannot grow forever: in the worst case contain all tokens

Constraints for Computing Nullable

• Non-terminal is nullable if it can derive ε

S ::= X | Y
X ::= b | S Y
Y ::= Z X b | Y b
Z ::= ε | a

S' = X' | Y'
X' = 0 | (S' & Y')
Y' = (Z' & X' & 0) | (Y' & 0)
Z' = 1 | 0

S', X', Y', Z' {0,1}∈
 0 - not nullable
 1 - nullable
 | - disjunction
 & - conjunction

 S' X' Y' Z'
 0 0 0 0
 0 0 0 1
 0 0 0 1

1.
2.
3.

again monotonically growing

Computing first and nullable

• Given any grammar we can compute
– for each non-terminal X whether nullable(X)
– using this, the set first(X) for each non-terminal X

• General approach:
– generate constraints over finite domains, following

the structure of each rule
– solve the constraints iteratively

• start from least elements
• keep evaluating RHS and re-assigning the value to LHS
• stop when there is no more change

Summary: Algorithm for nullable
nullable = {}
changed = true
while (changed) {
 changed = false
 for each non-terminal X
 if ((X is not nullable) and
 (grammar contains rule X ::= ε | ...)
 or (grammar contains rule X ::= Y1 ... Yn | ...
 where {Y1,...,Yn} nullable)⊆
 then {
 nullable = nullable U {X}
 changed = true
 }
}

Summary: Algorithm for first

for each nonterminal X: first(X)={}
for each terminal t: first(t)={t}
repeat
 for each grammar rule X ::= Y(1) ... Y(k)
 for i = 1 to k
 if i=1 or {Y(1),...,Y(i-1)} nullable ⊆ then
 first(X) = first(X) U first(Y(i))
until none of first(…) changed in last iteration

Follow sets. LL(1) Parsing Table

Exercise Introducing Follow Sets
Compute nullable, first for this grammar:

stmtList ::= ε | stmt stmtList
stmt ::= assign | block
assign ::= ID = ID ;
block ::= beginof ID stmtList ID ends

Describe a parser for this grammar and explain how it
behaves on this input:

beginof myPrettyCode
 x = u;
 y = v;
 myPrettyCode ends

How does a recursive descent parser
look like?

def stmtList =
 if (???) {} what should the condition be?
 else { stmt; stmtList }
def stmt =
 if (lex.token == ID) assign
 else if (lex.token == beginof) block
 else error(“Syntax error: expected ID or beginonf”)
…
def block =
 { skip(beginof); skip(ID); stmtList; skip(ID); skip(ends) }

Problem Identified
stmtList ::= ε | stmt stmtList
stmt ::= assign | block
assign ::= ID = ID ;
block ::= beginof ID stmtList ID ends

Problem parsing stmtList:
– ID could start alternative stmt stmtList
– ID could follow stmt, so we may wish to parse ε

that is, do nothing and return
• For nullable non-terminals, we must also

compute what follows them

LL(1) Grammar - good for building
recursive descent parsers

• Grammar is LL(1) if for each nonterminal X
– first sets of different alternatives of X are disjoint
– if nullable(X), first(X) must be disjoint from follow(X)

and only one alternative of X may be nullable
• For each LL(1) grammar we can build

recursive-descent parser
• Each LL(1) grammar is unambiguous
• If a grammar is not LL(1), we can sometimes

transform it into equivalent LL(1) grammar

Computing if a token can follow

first(B1 ... Bp) = {a Σ∈ | B1...Bp ⇒... ⇒ aw }

follow(X) = {a Σ∈ | S ⇒... ⇒ ...Xa... }

There exists a derivation from the start symbol
that produces a sequence of terminals and
nonterminals of the form ...Xa...
(the token a follows the non-terminal X)

Rule for Computing Follow

Given X ::= YZ (for reachable X)
then first(Z) ⊆ follow(Y)
and follow(X) ⊆ follow(Z)

now take care of nullable ones as well:

For each rule X ::= Y1 ... Yp ... Yq ... Yr

follow(Yp) should contain:
• first(Yp+1Yp+2...Yr)
• also follow(X) if nullable(Yp+1Yp+2Yr)

Compute nullable, first, follow

stmtList ::= ε | stmt stmtList
stmt ::= assign | block
assign ::= ID = ID ;
block ::= beginof ID stmtList ID ends

Is this grammar LL(1)?

Conclusion of the Solution

The grammar is not LL(1) because we have
• nullable(stmtList)
• first(stmt) ∩ follow(stmtList) = {ID}

• If a recursive-descent parser sees ID, it does
not know if it should
– finish parsing stmtList or
– parse another stmt

Table for LL(1) Parser: Example

S ::= B EOF
 (1)

B ::= ε | B (B)
 (1) (2)

EOF ()

S {1} {1} {}

B {1} {1,2} {1}

nullable: B
first(S) = { (, EOF }
follow(S) = {}
first(B) = { (}
follow(B) = {), (, EOF }

Parsing table:

parse conflict - choice ambiguity:
grammar not LL(1)

empty entry:
when parsing S,
if we see) ,
report error

1 is in entry because (is in follow(B)
2 is in entry because (is in first(B(B))

Table for LL(1) Parsing

Tells which alternative to take, given current token:
choice : Nonterminal x Token -> Set[Int]

A ::= (1) B1 ... Bp

 | (2) C1 ... Cq

 | (3) D1 ... Dr

For example, when parsing A and seeing token t
choice(A,t) = {2} means: parse alternative 2 (C1 ... Cq)

choice(A,t) = {3} means: parse alternative 3 (D1 ... Dr)

choice(A,t) = {} means: report syntax error
choice(A,t) = {2,3} : not LL(1) grammar

if t first(∈ C1 ... Cq) add 2
 to choice(A,t)
if t follow(A) add K to ∈
choice(A,t) where K is nullable

General Idea when parsing nullable(A)

A ::= B1 ... Bp

 | C1 ... Cq

 | D1 ... Dr

def A =
 if (token ∈ T1) {
 B1 ... Bp

 else if (token (∈ T2 U TF)) {
 C1 ... Cq

 } else if (token ∈ T3) {
 D1 ... Dr

 } // no else error, just returnwhere:
T1 = first(B1 ... Bp)
T2 = first(C1 ... Cq)
T3 = first(D1 ... Dr)
TF = follow(A)

Only one of the alternatives can be nullable (here: 2nd)
T1, T2, T3, TF should be pairwise disjoint sets of tokens.

