
Lecture 3
Building Lexical Analyzers



Computing ’nullable’ for regular expressions

If e is regular expression (its syntax tree), then L(e) is the
language denoted by it.
For L ⊆ A∗ we defined nullable(L) as ε ∈ L
If e is a regular expression, we can compute nullable(e) to be
equal to nullable(L(e)), as follows:

nullable(∅) = false
nullable(ε) = true
nullable(a) = false

nullable(e1|e2) = nullable(e1) ∨ nullable(e2)

nullable(e∗) = true
nullable(e1e2) = nullable(e1) ∧ nullable(e2)



Computing ’first’ for regular expressions

For L ⊆ A∗ we defined: first(L) = {a ∈ A | ∃v ∈ A∗. av ∈ L}.
If e is a regular expression, we can compute first(e) to be equal
to first(L(e)), as follows:

first(∅) = ∅

first(ε) = ∅

first(a) = {a}, for a ∈ A

first(e1|e2) = first(e1) ∪ first(e2)

first(e∗) = first(e)

first(e1e2) = if (nullable(e1)) then first(e1) ∪ first(e2)

else first(e1)



Clarification for first of concatenation

Let e be a∗b. Then L(e) = {b,ab,aab,aaab, . . .}
first(L(e)) = {a,b}

Clearly e = e1e2 where e1 = a∗ and e2 = b. Thus, nullable(e1).

first(e1e2) = first(e1) ∪ first(e2) = {a} ∪ {b} = {a,b}

It is not correct to use first(e) =? first(e1) nor to use
first(e) =? first(e2), we must use their union.



Converting Simple Regular Expressions to Source
Code

regular expression code
a (a ∈ A) if (current = a) next else error
r1r2 code(r1); code(r2)

r1|r2 if (current ∈ first(r1))
code(r1)

else code(r2)

r∗ while (current ∈ first(r))
code(r)



More complex cases
In other cases, one or even more upcoming characters
(“lookahead”) are not sufficient to determine which token is
coming up.

Example: a language might have separate tokens to simplify
type checking:

I integer constants: digit digit∗

I floating point constants: digit digit∗ . digit digit∗

Floating point constants must contain a period (e.g., Modula-2).

Division sign begins with same character as // comments

Equality can begin several different tokens

In such cases, we process characters and store them until we
have enough information to make the decision on the current
token.



Example of a part of a lexical analyzer

ch.current match {
case ’(’ => {current = OPAREN; ch.next; return}
case ’)’ => {current = CPAREN; ch.next; return}
case ’+’ => {current = PLUS; ch.next; return}
case ’/’ => {current = DIV; ch.next; return}
case ’∗’ => {current = MUL; ch.next; return}
case ’=’ => { // more tricky because there can be =, ==

ch.next
if (ch.current == ’=’) {ch.next; current = CompareEQ; return}
else {current = AssignEQ; return}
}
case ’<’ => { // more tricky because there can be <, <=

ch.next
if (ch.current == ’=’) {ch.next; current = LEQ; return}
else {current = LESS; return}
}
}

What if we omit ch.next?
Lexer could generate a non-existing equality token!
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White spaces and comments
Whitespace can be defined as a token, using space character,
tabs, and various end of line characters. Similarly for
comments.

In most languages (Java, ML, C) white spaces and comments
can occur between any two other tokens have no meaning, so
parser does not want to see them.

Convention: the lexical analyzer removes those “tokens” from
its output. Instead, it always finds the next non-whitespace
non-comment token.

Other conventions and interpretations of new line became
popular to make code more concise (sensitivity to end of line or
indentation). Not our problem in this course!
Tools that do formatting of source also must remember
comments and white space. We ignore those as well here.



Skipping simple comments

if (ch.current=’/’) {
ch.next
if (ch.current=’/’) {

while (!isEOL && !isEOF) {
ch.next
}

} else {

ch.current = DIV
}
}

Nested comments: this is a single comment:
/* foo /* bar */ baz */
Solution: use a counter for nesting depth
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Longest match (maximal munch) rule
Lexical analyzer is required to be greedy: always get the
longest possible token at this time. Otherwise, there would be
too many ways to split input into tokens!
Consider language with the following tokens:
ID: letter(digit | letter)∗

LE: <=
LT: <
EQ: =

How can we split this input into subsequences, each of which in
a token:

interpreters <= compilers

Some solutions:
ID(interpreters) LE ID(compilers)
ID(inter) ID(preters) LT EQ ID(com) ID(pilers)

ID(interpreters) LT EQ ID(com) ID(pilers)
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Longest match rule is greedy, but that’s OK

Consider language with ONLY these three operators:
LT: <
LE: <=
IMP: =>

For sequence:

<=>

lexer will first return LE as token, and then report unknown
token >’.
This error is what we expect and that is fine.

This is despite the fact that one could in principle split the input
into < and =>, which correspond to sequence LT IMP. But
such a split would not satisfy longest match rule, we do want it.

This is not a problem: programmer we can insert extra spaces
to stop maximal munch from taking too many characters.



Token priority
What if our token classes intersect?
Longest match rule does not help, because the same string
belongs to two regular expressions
Examples:

I a keyword is also an identifier
I a constant can be integer or floating point

Solution is priority: order all tokens and in case of overlap take
one earlier in the list (higher priority).
Examples:

I if it matches regular expression for both a keyword and an
identifier, then we define that it is a keyword.

I if it matches both integer constant and floating point
constant regular expression, then we define it to be (for
example) an integer

Token priorities for overlapping tokens must be specified in
language definition.


