### **Automating Construction of Lexers**

# **Regular Expression to Programs**

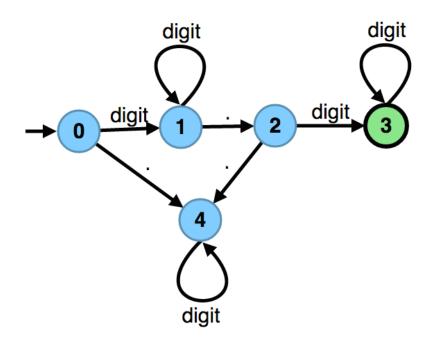
- Not all regular expressions are simple.
- How can we write a lexer for (a\*b | aaa)?
- Tokenizing aaaab Vs aaaaaa



Finite State Automaton (Finite State Machine)  $\delta \subseteq Q \times \Sigma \times Q,$ •  $A = (\Sigma, Q, q_0, \delta, F)$  $q_0 \in Q$ ,  $F \subseteq Q$ b a b  $q_0 \in Q$  $q_1 \subseteq Q$ а Ω  $\delta = \{ (q_0, a, q_1), (q_0, b, q_0), \}$  $(q_1, a, q_1), (q_1, b, q_1), \}$ 

- Σ alphabet
- Q states (nodes in the graph)
- q<sub>0</sub> initial state (with '->' sign in drawing)
- $\delta$  transitions (labeled edges in the graph)
- F final states (double circles)

### Numbers with Decimal Point

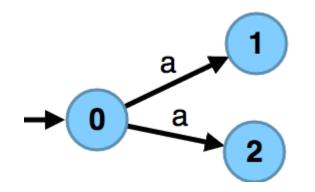


digit digit\* . digit digit\*

What if the decimal part is optional?

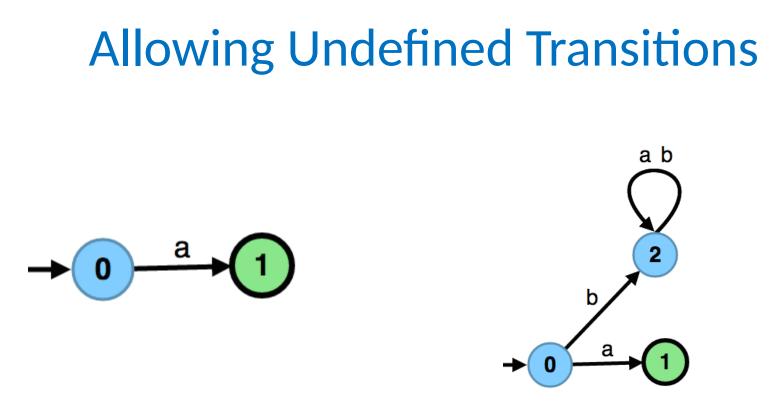
# Kinds of Finite State Automata

- DFA:  $\delta$  is a function :  $(Q, \Sigma) \mapsto Q$
- •NFA:  $\delta$  could be a relation
- In NFA there is no unique next state. We have a set of possible next states.



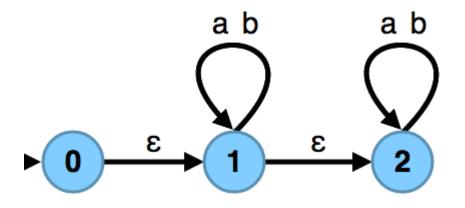
# **Remark: Relations and Functions**

- Relation  $r \subseteq B \times C$  $r = \{ ..., (b,c1), (b,c2), ... \}$
- Corresponding function: f : B -> 2<sup>c</sup>
  - f = { ... (b,{c1,c2}) ... }
  - $f(b) = \{ c \mid (b,c) \in r \}$
- Given a state, next-state function returns the set of new states
  - for deterministic automaton, the set has exactly 1 element



 Undefined transitions lead to a sink state from where no input can be accepted

# **Allowing Epsilon Transitions**



• Epsilon transitions:

-traversing them does not consume anything

• Transitions labeled by a word:

-traversing them consumes the entire word

# Interpretation of Non-Determinism

 A word is accepted if there is a path in the automaton that leads to an accepting state on reading the word

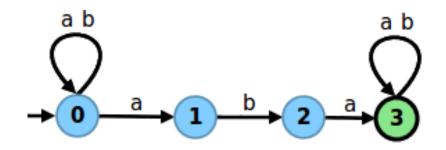
Does the automaton accept 'a' ?

- yes

Eg.

#### Exercise

• Construct a NFA that recognizes all strings over {a,b} that contain "aba" as a substring



# Running NFA (without epsilons)

```
def \delta(a: Char)(q: State): Set[States] = \{ \dots \}
def \delta'(a : Char, S : Set[States]) : Set[States] = {
 for (q1 \le S, q2 \le \delta(a)(q1)) yield q2 // S.flatMap(\delta(a))
}
def accepts(input : MyStream[Char]) : Boolean = {
 var S : Set[State] = Set(q0) // current set of states
 while (!input.EOF) {
  val a = input.current
  S = \delta'(a.S) // next set of states
 !(S.intersect(finalStates).isEmpty)
```

### NFA Vs DFA

- For every NFA there exists an equivalent DFA that accepts the same set of strings
- But, NFAs could be exponentially smaller (succinct)
- There are NFAs such that **every** DFA equivalent to it has exponentially more number of states

# **Regular Expressions and Automata**

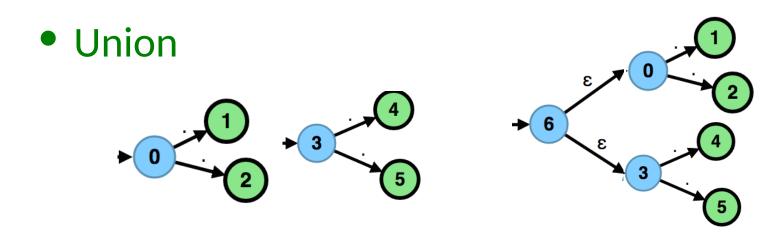
#### Theorem:

If L is a set of words, it is describable by a regular expression iff (if and only if) it is the set of words accepted by some finite automaton.

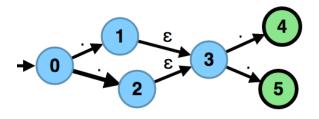
Algorithms:

- regular expression  $\rightarrow$  automaton (important!)
- automaton  $\rightarrow$  regular expression (cool)

### **Recursive Constructions**

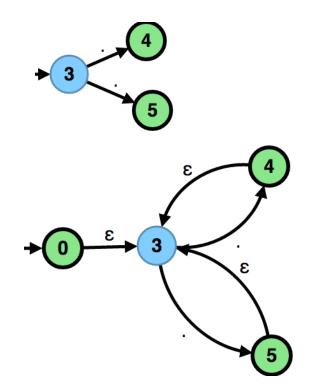


Concatenation



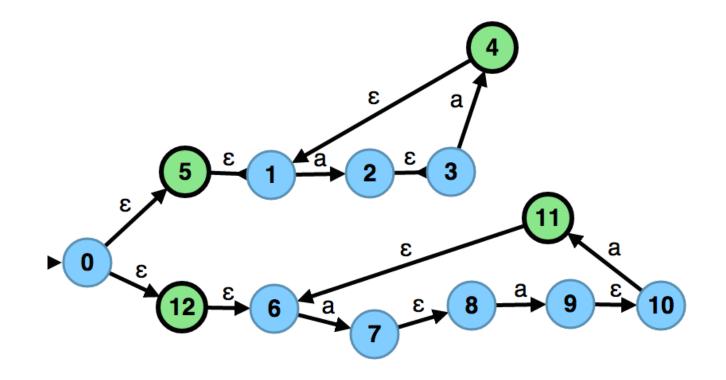
### **Recursive Constructions**





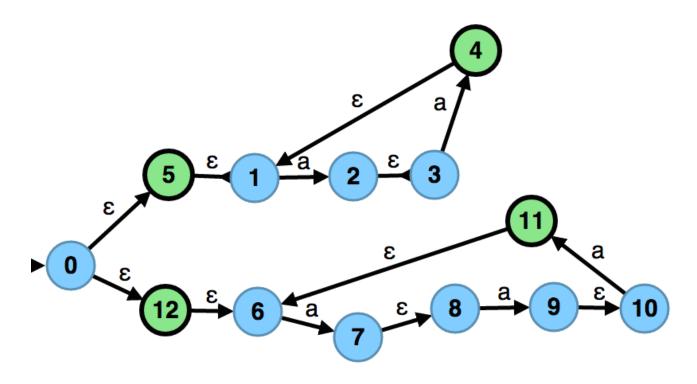
### Exercise: $(aa)^* | (aaa)^*$

Construct an NFA for the regular expression



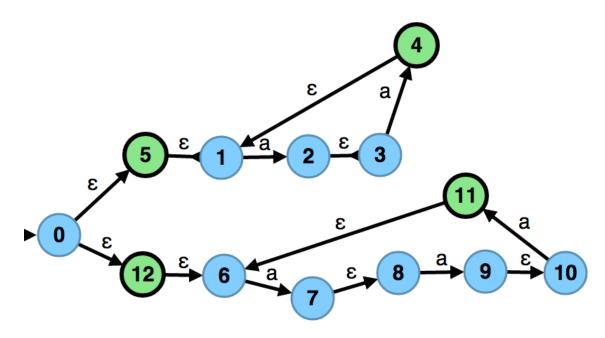
# NFAs to DFAs (Determinisation)

- keep track of a set of all possible states in which the automaton could be
- view this finite set as one state of new automaton

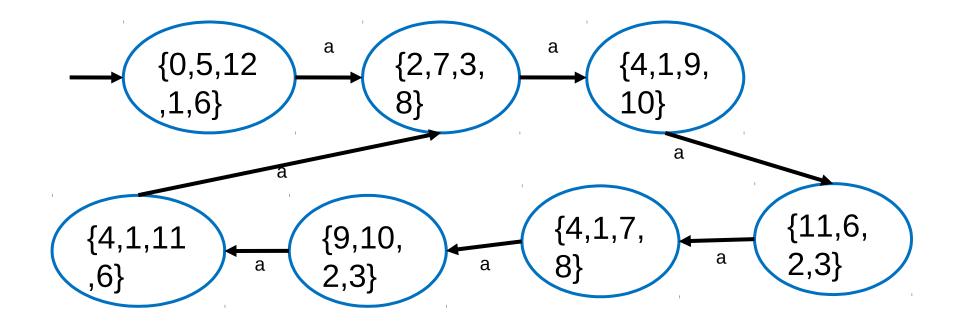


Possible states of the DFA:  $2^{Q}$ 

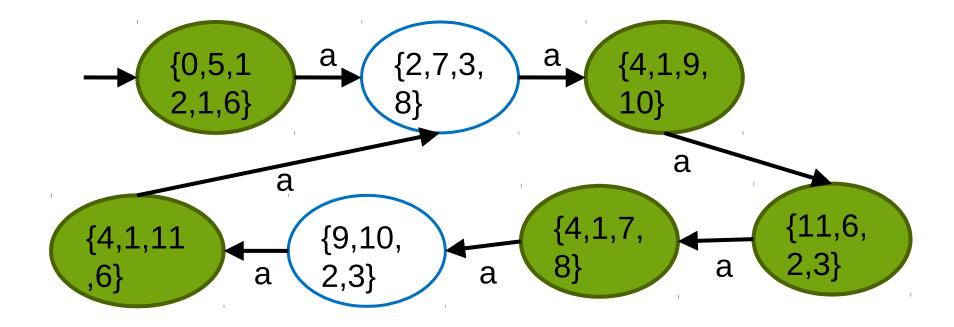
 $\{ \{ \}, \{ 0\}, \dots, \{12\}, \{0,1\}, \dots, \{0,12\}, \dots, \{12, 12\}, \{0,1,2\} \dots, \{ 0,1,2\dots,12 \} \}$ 



- DFA:  $(\Sigma, 2^Q, q'_0, \delta', F')$
- $\bullet q_0' = E(q_0)$
- $\bullet \delta'(q', a) = \bigcup_{\{\exists q_1 \in q', \, \delta(q_1, a, q_2)\}} E(q_2)$
- $\bullet F' = \{ q' | q' \in 2^Q, q' \cap F \neq \emptyset \}$



### NFA to DFA Example



# Clarifications

- what happens if a transition on an alphabet 'a' is not defined for a state 'q' ?
- $\delta'(\{q\}, a) = \emptyset$
- $\delta'(\emptyset, a) = \emptyset$
- Empty set represents a state in the NFA
- It is a trap/sink state: a state that has selfloops for all symbols, and is non-accepting.

# Minimizing DFAs to Keep Them Small

• First, throw away all unreachable states: those for which there is no path to them from the initial state

# Minimizing DFAs: Procedure

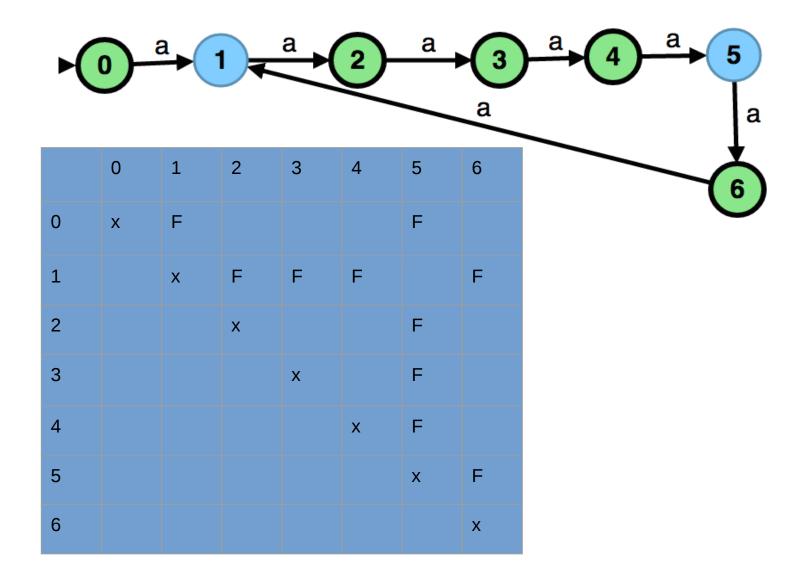
- Write down all pairs of state as a table
- Every cell in the table denotes whether the corresponding states are equivalent

|    | q1 | q2 | q3 | q4 | q5 |
|----|----|----|----|----|----|
| q1 | х  | ?  | ?  | ?  | ?  |
| q2 |    | х  | ?  | ?  | ?  |
| qЗ |    |    | х  | ?  | ?  |
| q4 |    |    |    | х  | ?  |
| q5 |    |    |    |    | x  |

# Minimizing DFAs: Procedure

- Inititalize cells (q1, q2) to false if one of them is final and other is non-final
- Make the cell (q1, q2) false, if q1 -> q1' on some alphabet symbol and q2 -> q2' on 'a' and q1' and q2' are not equivalent
- Iterate the above process until all non-equivalent states are found

# Minimizing DFAs: Illustration



# **Properties of Automata**

#### **Complement:**

- Given a DFA A, switch accepting and non-accepting states in A gives the complement automaton  $A^c$
- $L(A^c) = (\Sigma^* \setminus L(A))$

Note this does not work for NFA

Emptiness of language, inclusion of one language into another, equivalence – they are all decidable

#### Exercise 0.1: on Equivalence

Prove that  $(a^*b^*)^*$  is equivalent to  $(a|b)^*$ 

### Sequential Circuits are Automata

- A = (Σ, Q, q<sub>0</sub>, δ, F)
- Q states of flip-flops, registers, etc.
   δ combinational circuit that determines next state