
Automating Construction of Lexers

Regular Expression to Programs
• Not all regular expressions are simple.
• How can we write a lexer for (a*b | aaa) ?
• Tokenizing aaaab Vs aaaaaa

Regular
Expression

Finite state
machine (FSA)

Program

Finite State Automaton
(Finite State Machine)

• A = (Σ, Q, q0, δ, F)

• Σ - alphabet
• Q - states (nodes in the graph)
• q0 - initial state (with ‘->' sign in drawing)
• δ - transitions (labeled edges in the graph)
• F - final states (double circles)

Numbers with Decimal Point

digit digit* . digit digit*

What if the decimal part is optional?

•DFA:  is a function :
•NFA:  could be a relation

•In NFA there is no unique next state. We have a set
of possible next states.

Kinds of Finite State Automata

Remark: Relations and Functions
• Relation r B x C⊆

r = { ..., (b,c1) , (b,c2) ,... }
• Corresponding function: f : B -> 2C

f = { ... (b,{c1,c2}) ... }
 f(b) = { c | (b,c) r }∈
• Given a state, next-state function returns the

set of new states
– for deterministic automaton, the set has exactly 1

element

Allowing Undefined Transitions

• Undefined transitions lead to a sink state from
where no input can be accepted

Allowing Epsilon Transitions

• Epsilon transitions:
–traversing them does not consume anything

• Transitions labeled by a word:
–traversing them consumes the entire word

Interpretation of Non-Determinism
• A word is accepted if there is a path in the

automaton that leads to an accepting state on
reading the word
Eg.

• Does the automaton accept ‘a’ ?
– yes

Exercise
• Construct a NFA that recognizes all strings over {a,b} that

contain "aba" as a substring

Running NFA (without epsilons)

def δ(a : Char)(q : State) : Set[States] = { ... }
def δ'(a : Char, S : Set[States]) : Set[States] = {
 for (q1 <- S, q2 <- δ(a)(q1)) yield q2 // S.flatMap(δ(a))
}
def accepts(input : MyStream[Char]) : Boolean = {
 var S : Set[State] = Set(q0) // current set of states
 while (!input.EOF) {
 val a = input.current
 S = δ'(a,S) // next set of states
 }
 !(S.intersect(finalStates).isEmpty)
}

NFA Vs DFA
• For every NFA there exists an equivalent DFA that

accepts the same set of strings

• But, NFAs could be exponentially smaller (succinct)

• There are NFAs such that every DFA equivalent to it
has exponentially more number of states

Regular Expressions and Automata

Theorem:
If L is a set of words, it is describable by a regular
expression iff (if and only if) it is the set of words
accepted by some finite automaton.

Algorithms:
• regular expression → automaton (important!)
• automaton → regular expression (cool)

Recursive Constructions
• Union

• Concatenation

Recursive Constructions
• Star

Exercise: (aa)* | (aaa)*
• Construct an NFA for the regular expression

NFAs to DFAs (Determinisation)
• keep track of a set of all possible states in

which the automaton could be

• view this finite set as one state of new
automaton

NFA to DFA Conversion

NFA to DFA Conversion

NFA to DFA Conversion

•DFA:

NFA to DFA Conversion

{0,5,12
,1,6}

{2,7,3,
8}

a
{4,1,9,
10}

a

{11,6,
2,3}

a

{4,1,7,
8}

{9,10,
2,3}

{4,1,11
,6}

aaa

a

NFA to DFA Example

{0,5,1
2,1,6}

{2,7,3,
8}

a {4,1,9,
10}

a

{11,6,
2,3}

a

{4,1,7,
8}

{9,10,
2,3}

{4,1,11
,6} aaa

a

Clarifications

Minimizing DFAs to Keep Them Small
• First, throw away all unreachable states: those for which

there is no path to them from the initial state

Minimizing DFAs: Procedure
• Write down all pairs of state as a table
• Every cell in the table denotes whether the

corresponding states are equivalent

q1 q2 q3 q4 q5

q1 x ? ? ? ?

q2 x ? ? ?

q3 x ? ?

q4 x ?

q5 x

Minimizing DFAs: Procedure
• Inititalize cells (q1, q2) to false if one of them is

final and other is non-final
• Make the cell (q1, q2) false, if q1 -> q1’ on some

alphabet symbol and q2 -> q2’ on ‘a’ and q1’ and
q2’ are not equivalent

• Iterate the above process until all non-equivalent
states are found

Minimizing DFAs: Illustration

0 1 2 3 4 5 6

0 x F F

1 x F F F F

2 x F

3 x F

4 x F

5 x F

6 x

Properties of Automata

Emptiness of language, inclusion of one language
into another, equivalence – they are all decidable

Exercise 0.1: on Equivalence

Prove that (a*b*)* is equivalent to (a|b)*

Sequential Circuits are Automata

A = (Σ, Q, q0, δ, F)

Q – states of flip-flops, registers, etc.
δ – combinational circuit that determines

next state

	Slide 1
	Regular Expression to Programs
	Finite State Automaton (Finite State Machine)
	Numbers with Decimal Point
	Kinds of Finite State Automata
	Remark: Relations and Functions
	Allowing Undefined Transitions
	Allowing Epsilon Transitions
	Interpretation of Non-Determinism
	Exercise
	Running NFA (without epsilons) in Scala
	NFA Vs DFA
	Regular Expressions and Automata
	Recursive Constructions
	Recursive Constructions
	Exercise: (aa)* | (aaa)*
	NFAs to DFAs (Determinisation)
	NFA to DFA Conversion
	NFA to DFA Conversion
	NFA to DFA Conversion
	NFA to DFA Conversion
	NFA to DFA Example
	Clarifications
	Minimizing DFAs to Keep Them Small
	Minimizing DFAs: Procedure
	Minimizing DFAs: Procedure
	Minimizing DFAs: Illustration
	Properties of Automata
	Exercise 0.1: on Equivalence
	Sequential Circuits are Automata

