
Automating Construction of Lexers



Regular Expression to Programs
• Not all regular expressions are simple. 
• How can we write a lexer for (a*b | aaa) ?
• Tokenizing aaaab Vs aaaaaa 

Regular 
Expression

Finite state 
machine (FSA)

Program



Finite State Automaton 
(Finite State Machine)

• A = (Σ, Q, q0, δ, F)

• Σ - alphabet
• Q - states (nodes in the graph)
• q0 - initial state (with ‘->' sign in drawing)
• δ - transitions (labeled edges in the graph)
• F - final states (double circles)

 

 



Numbers with Decimal Point

digit digit* . digit digit*

What if the decimal part is optional?



•DFA:  is a function : 
•NFA:  could be a relation

•In NFA there is no unique next state. We have a set 
of possible next states.

 

Kinds of Finite State Automata



Remark: Relations and Functions
• Relation   r  B x C⊆

r = { ..., (b,c1) , (b,c2) ,... }
• Corresponding function: f : B -> 2C

f = { ... (b,{c1,c2}) ... }
  f(b) = { c | (b,c)  r }∈
• Given a state, next-state function returns the 

set of new states
– for deterministic automaton, the set has exactly 1 

element



Allowing Undefined Transitions

• Undefined transitions lead to a sink state from 
where no input can be accepted



Allowing Epsilon Transitions

• Epsilon transitions: 
–traversing them does not consume anything 

• Transitions labeled by a word: 
–traversing them consumes the entire word



Interpretation of Non-Determinism
• A word is accepted if there is a path in the 

automaton that leads to an accepting state on 
reading the word
Eg.

 
       

• Does the automaton accept ‘a’ ?
– yes



Exercise
• Construct a NFA that recognizes all strings over {a,b}  that 

contain "aba" as a substring



Running NFA (without epsilons)

def δ(a : Char)(q : State) : Set[States] = { ... }
def δ'(a : Char, S : Set[States]) : Set[States] = {
   for (q1 <- S, q2 <- δ(a)(q1)) yield q2  // S.flatMap(δ(a))
}          
def accepts(input : MyStream[Char]) : Boolean = {
  var S : Set[State] = Set(q0) // current set of states
  while (!input.EOF) {
    val a = input.current
    S = δ'(a,S)  // next set of states
  }
  !(S.intersect(finalStates).isEmpty)
}



NFA Vs DFA
• For every NFA there exists an equivalent  DFA that 

accepts the same set of strings

• But, NFAs could be exponentially smaller (succinct)

• There are NFAs such that every DFA equivalent to it 
has exponentially more number of states



Regular Expressions and Automata

Theorem:
If L is a set of words, it is describable by a regular 
expression iff (if and only if) it is the set of words 
accepted by some finite automaton.

Algorithms:
• regular expression → automaton (important!)
• automaton → regular expression (cool)



Recursive Constructions
• Union

• Concatenation



Recursive Constructions
• Star



Exercise:    (aa)* | (aaa)*
• Construct an NFA for the regular expression



NFAs to DFAs (Determinisation)
• keep track of a set of all possible states in 

which the automaton could be

• view this finite set as one state of new 
automaton



NFA to DFA Conversion

 



NFA to DFA Conversion



NFA to DFA Conversion

•DFA: 
 



NFA to DFA Conversion
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NFA to DFA Example 
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Clarifications

 



Minimizing DFAs to Keep Them Small
• First, throw away all unreachable states: those for which 

there is no path to them from the initial state



Minimizing DFAs:  Procedure
• Write down all pairs of state as a table
• Every cell in the table denotes whether the 

corresponding states are equivalent

q1 q2 q3 q4 q5

q1 x ? ? ? ?

q2 x ? ? ?

q3 x ? ?

q4 x ?

q5 x



Minimizing DFAs:  Procedure 
• Inititalize cells (q1, q2) to false if one of them is 

final and other is non-final
• Make the cell (q1, q2) false, if q1 -> q1’ on some 

alphabet symbol and q2 -> q2’ on ‘a’ and q1’ and 
q2’ are not equivalent

• Iterate the above process until all non-equivalent 
states are found



Minimizing DFAs:  Illustration

0 1 2 3 4 5 6

0 x F F

1 x F F F F

2 x F

3 x F

4 x F

5 x F

6 x



Properties of Automata 

 

Emptiness of language, inclusion of one language 
into another, equivalence – they are all decidable



Exercise 0.1: on Equivalence

Prove that (a*b*)* is equivalent to (a|b)*



Sequential Circuits are Automata

A = (Σ, Q, q0, δ, F)

Q – states of flip-flops, registers, etc.
δ – combinational circuit that determines 

next state
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