CS-320
Computer Language Processing

Exercise Session 4

November 1, 2017

Overview

Today you will get some more practice in understanding and
designing type systems:

» Exploring a typing derivation in Amyrli

» Amy’s pattern matching rule

> A type system for physical units

Recap: Type-checking a simple program

Consider the Amy-like language of arithmetic, logical connectives
and if expressions from the lecture:
t:= true| false | ¢/ | ft1,...,ty) | if (t) t1 else tp

where ¢; denotes integer literals.

We also saw some of its typing rules, for instance:

IF-THEN-ELSE
'+ b:Bool M-t 7 M-t:r

[(if (b) t; else tp) : 7T

Finding a typing-derivation for a simple program

Exercise 1

> Given the type system we saw for this language, type-check and
show the typing derivations for the following program:

Pfun = (e7 fun(2))
where e(fun) = (n, Int, if (n < 1) 1 else nx fun(n), Int)

Recap: When do we say a program type-checks?

Given initial program (e, t) define

Fo={(fn x - x71n—=70)|(f_,(11,-..,7n), trT0) € €}

We say program type checks iff:
(1) the top-level expression type checks:

loFt: T

and
(2) each function body type checks:

ro (&) {(Xl,Tl), .. .,(Xn,Tn)} - tr: 7o

for each (f, (x1,...,%n), (T1,--.,7n), tr, T0) € €.

Finding a typing-derivation for a simple program

Exercise 1 (solution)

= We have to check whether

a) o fun(2) : T for some type T, and

b) Iy Fif (n < 1) 1 else nx fun(n) : Int

where g = {... (builtins), (fun, Int = Int)} and
Mo ="To® {(n,Int)}.

Typing derivation for g - fun(2) : T:

(fun, Int = Int) € Iy
o & fun:Int = Int Mo 2:Int
Mo F fun(2) :Int

Finding a typing-derivation for a simple program

Exercise 1 (solution)

Typing derivation for [y - if (n < 1) 1 else n* fun(n) : Int where
Mo ="To®{(n,Int)}:

? ?

Mo F n<1:Bool Mo 1:Int (o = nx* fun(n) : Int
Mo Fif (n < 1)1 else nx fun(n) : Int

Finding a typing-derivation for a simple program

Exercise 1 (solution)

Typing derivation for [y = n < 1 :Bool.

<,(Int x Int) = bool) € n, Int) €
l l Bool) € T, I Mo
Mo F<:(Int x Int) = Bool Mo+ n:int Mok 1:Int

Mo F n<1:Bool

Finding a typing-derivation for a simple program

Exercise 1 (solution)

Typing derivation for 'y = n « fun(n) : Int.

(fun, Int = Int) € T (n, Int) € T
(%, (Int x Int) = Int) € T} (n,Int) € Ty My - fun:int = Int Mot n:int
Ty = :(Int x Int) = Int Mo n:int o+ fun(n) :Int

Iy F nx fun(n) : Int

Finding a typing-derivation for a simple program

Exercise 1

> We have shown that the program type-checks, but did you notice
any other problem with it?

Typing rules for pattern matching in Amy

We have seen a typing rule for if expressions, but how can we type
more advanced control constructs like pattern matches?
Let's see a corresponding rule for the Amy language:

PATTERN MATCHING

Ne:Ts
Vie [1,n]. MEpi:Ts >0y, Fol,Fe:Te
e match { case p; => e ... case p, => e, }: 1.

Note that we use auxiliary extraction judgments of the form
NEp:ToeTp,

to check that pattern p matches a type T, while also extracting its
bindings Ip.

Typing rules for pattern matching in Amy

We have seen a typing rule for if expressions, but how can we type
more advanced control constructs like pattern matches?
Let's see a corresponding rule for the Amy language:

PATTERN MATCHING

NFe:Ts
Vie [1,n]. MEpi:Ts >y, Fol,Fe:Te
e match { case p; => e ... case p, => e, }: 1.

Note that we use auxiliary extraction judgments of the form
NEp:ToeTp,

to check that pattern p matches a type T, while also extracting its
bindings Ip.

Typing rules for pattern matching in Amy

We have seen a typing rule for if expressions, but how can we type
more advanced control constructs like pattern matches?
Let's see a corresponding rule for the Amy language:

PATTERN MATCHING

Ne:Ts
Vie[1,n]. M pi:Ts T, Frel,Fe:Te
e match { case p; => e ... case p, => e, }: 1.

Note that we use auxiliary extraction judgments of the form
FrEp:Tel,

to check that pattern p matches a type T, while also extracting its
bindings Ip.

Typing rules for pattern matching in Amy

We have seen a typing rule for if expressions, but how can we type
more advanced control constructs like pattern matches?
Let's see a corresponding rule for the Amy language:

PATTERN MATCHING

Ne:Ts
Vie[1,n]. MEpi:Ts >y, Mol Fei:Te
e match { case p; => e ... case p, => e, }: 1.

Note that we use auxiliary extraction judgments of the form
NEp:ToeTp,

to check that pattern p matches a type T, while also extracting its
bindings Ip.

Typing rules for pattern matching in Amy (2)

We define the following extraction rules for patterns:

WILDCARD PATTERN IDENTIFIER PATTERN
N-_:Tro Frev:Tes{(v,T)}
CASE CLASS PATTERN
MEpr:Ty >0y FEpn:Ty T,
M- C: (Tl, ...,T,,):>T

[Cp1, oopn) Ty @By,

Type-checking pattern matching expressions

Exercise 2

> Find a typing derivation for the body of function /en in the
following program:

abstract class List
case class Nil() extends List
case class Cons(x: Int, xs: List) extends List

def len(xs: List): Int = xs match {
case Nil() = 0
case Cons(_, rest) => len(rest) + 1

}

A type-system for physical units

Exercise 3

Consider the following language of integral additions,
multiplications, divisions:

t:=cr|m|s|t+t|t-t]|t/t]|sqrt(t)
T:=1 | meter |second | T+ T| T°*

where cr denotes a real literal and m, s are used to introduce
meters and seconds as units.

For instance:

3:1 4 - m : meter 3-m/s: meter x second !

A type-system for physical units

Exercise 3

Note that (meter * second * meter~1) and (second) are not
syntactically equivalent!

= We will implicitly normalize our types and use a shorthand:

Dim m n =1 % meter™ % second”

For instance:

1=Dim00 meter = Dim 10 second ! xmeter = Dim 1 —1

meter (second * meter) ™! x second = Dim 0 0

A type-system for physical units

Exercise 3a

> Design typing rules that track the units of expressions and only
permit adding expressions of the same unit. Furthermore, make
sure that sqrt will only accept square meters.

> Write a function
dist : (meter * second ™! x second) = meter
and show its typing derivation.

A type-system for physical units

Exercise 3a (solution)

T-LiT T-MET T-SEC
Fecr:l F m : meter F s : second
Ft:Dimmn Ft:Dimmn
T-ADD -
Fti1+t:Dimmn
Ft;: Dim my n Ft: Dim my n
T-MuUL 1 1 .1 2 2 N2
F t1 -t : Dim (m1 + m2) (n1 + n2)
Ft;: Dim my n Ft: Dim my n
T-Drv 1 1m 2 2 N2

F tl/tz : Dim (m1 — m2) (n1 — n2)

t:Dim2m 0
sqrt(t) : Dim m 0

T-WEIRDSQRT

A type-system for physical units

Exercise 3b

> Using your typing rules, find a typing derivation for the following
(top-level) expression:

sqrt(m-4-m)+1/s-10-m-s

A type-system for physical units

Exercise 3b

> Using your typing rules, find a typing derivation for the following
(top-level) expression:

sart((m- 4) - m) + (((1/s) - 10) - m) -

