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Overview

Today we will have a deeper look at tokenization.

What does a tokenizer do?

⇒ It transforms a stream of symbols into a stream of tokens.

How can we automatically generate tokenizers?

⇒ We will use regular languages and automata.
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Tokenizer

First, let us define a tokenizer as an ordered set of token names
and regular expressions

〈Token1 := e1, Token2 := e2, . . . 〉

where earlier token classes have higher priority than later ones.

E.g.

〈ID := letter (letter | digit)∗, LE := <=, LT := <, EQ := =〉



Recap: Ambiguity in tokenization

Recall that tokenization differs from matching using a single
regular expression (say (e1 | e2 | . . . )∗).

Rather, the result of tokenizing an input stream of symbols is a
stream of tokens. Each token maps to a subsequence of the input
stream, and none of the tokens’ subsequences overlap.

E.g.
i0 <= size tokenize⇒ ID

i0
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size

. How do we avoid ambiguities?

i0 <= size ???⇒ ID
i0
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Tokenization rules

Given an input string w the tokenizer will match tokens on a prefix
u of w = uv , output the matching token and repeat the process on
the remaining string v .

To disambiguate between different possible tokenizations we
employ two additional rules:

I Longest match: If we find matching tokens for prefixes of
varying lengths, we pick the longer prefix.

I Token priority: If multiple tokens match a prefix of the same
length, we pick the token that has higher priority.



A simple tokenization example
Exercise 1

. Given the tokenizer

〈T1 := a(ab)∗, T2 := b∗(ac)∗, T3 := cba, T4 := c+〉

tokenize the following input strings:

c a c c a b a c a c c b a b c

. Are there alternative tokenizations if we disregard the longest
match rule?
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Constructing a tokenizer

To automatically construct a tokenizer from token class definitions
we go through a series of transformations:

Token def.s translate⇒ NFA determinize⇒ DFA minimize⇒ DFA

The resulting DFA is then repeatedly used to produce tokens for an
input string.

(The minimization step is optional.)



Constructing a tokenizer (2)
(Token def.s ⇒ NFA)

Let e1, . . . , en be the regular expressions for each token class and
consider the regular expression (e1 | · · · | en).

E.g., for the token classes

〈ID := a (a | 0 | 1 | )∗, INT := (0 | 1) (0 | 1)∗, OP := + | −〉

we have
a (a | 0 | 1 | )∗ | (0 | 1) (0 | 1)∗ | (+ | −).



Constructing a tokenizer (3)

Convert the regular expression to an automaton and specify the
token class being recognized by each accepting state:

q0start

q1

q2

q3

a

0, 1

+, -

a, 0, 1,

0, 1



Constructing a tokenizer (3)

Convert the regular expression to an automaton and specify the
token class being recognized by each accepting state:
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In case of ambiguities we pick the token class of higher priority.
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Constructing a tokenizer (4)

Finally, we determinize and minimize the automaton:

q0start

ID: q1

INT : q2

OP: q3

q4
a

0, 1

+, -

a, 0, 1,

+, -

0, 1

a, +, -,

a, 0, 1, +, -,

a, 0, 1, +, -,



Lexing

We can then produce tokens for an input string as follows:

1. Initialize variables lastToken and lastTokenPos to the
initial value ⊥, resp. −1, and set the automaton’s state to q0.

2. Consume the next input character and make the
corresponding transition in the automaton.

I If we have arrived in an accepting state, update lastToken
with the corresponding token and set lastTokenPos to the
current position in the input string.

I If we have arrived in a state which cannot lead to acceptance
(a trap state, effectively):

I If lastToken = ⊥, report an error.
I Otherwise, output lastToken.

I Reset lastToken, and restart the automaton with the input
string starting at lastTokenPos + 1 (Continue with step 2).

3. If there is no more input to consume, output the lastToken,
or report an error, if lastToken = ⊥.



A tokenizer for XML
Exercise 3 (Quiz 2015)

Your goal is to construct a lexer (i.e, an automaton) that tokenizes an
XML input stream into the tokens listed below. Note that WS denotes a
white space character.

Token name Regular expression
OP <
CL >
OPSL < /
CLSL / >
EQ =
NAME letter(letter | digit)∗
NONNAME (digit | special)(letter | digit | special)∗
STRING ′′(letter | digit | special)∗′′
COMMENT <!−− (letter | digit | special)∗ −− >
SKIP WS



A tokenizer for XML (2)
Exercise 3 (Quiz 2015)

. Construct the labelled DFA described in the lectures for the tokens
defined above. Note that every final state should be labelled by the token
class(es) it accepts.



A tokenizer for XML (2)
Exercise 3 (Quiz 2015)

. Construct the labelled DFA described in the lectures for the tokens
defined above. Note that every final state should be labelled by the token
class(es) it accepts.

Consider the following XML string.

<j sonmessage>
<!−−Communicat ionOfJSonObjects−−>
<from i p =””>EPFLserver</from>
<message>{” f i e l d ”:1}</ message>

</j sonmessage>

. Show the list of tokens that should be generated by the lexer for the
above XML string. You need not show SKIP tokens, which correspond
to whitespaces.



Supporting tokens in FSMs

Once we try to put things together as outlined before we note that
the usual notion of finite-state automatons does not support
tokens.

What we really want is a notion of outputs rather than accepting
states.

. How can we adapt the formal definitions of finite-state
automatons to support such outputs?
. Identify where and how the transformations we have seen
(regular expressions to NFAs, determinization and minimization)
need to be adapted.


