CS-320 Computer Language Processing Exercise Session 1

October 2, 2017

Overview

We will recap and do exercises on the following topics:

- 1. Regular languages,
- 2. Finite state machines,
- 3. how to determinize them, and
- 4. how to *minimize* them.

Alphabet Σ is a set of symbols $\{a, b, c, ...\}$.

A word *w* is a sequence of symbols $s_i \in \Sigma$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

We denote the empty word by ϵ .

A language L is a set of words.

Operations on regular languages

We define several operations on regular languages:

- Concatenation $L_1 \cdot L_2$,
- Union $L_1 \cup L_2$, and
- ► Kleene closure L*.

Other operations such as \cdot^+ , \cdot ? can be expressed using the above.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Finite-state automata

A deterministic finite-state automaton (DFA) is defined by a quintuple $\langle \Sigma, Q, s_0, \delta, F \rangle$ where

- Σ is a (finite) set of symbols called the alphabet,
- Q is the finite set of states,
- $s_0 \in Q$ is the initial state,
- $\delta: (Q \times \Sigma) \rightarrow Q$ is called the transition function, and
- *F* ⊆ *Q* is the set of accepting states.

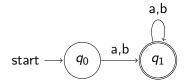
For nondeterministic finite-state automatons (NFAs) δ is not necessarily a function, i.e., in general we only have $\delta \subseteq Q \times \Sigma \times Q$.

A simple regular language Exercise 1

 \triangleright Find a finite-state automaton that accepts the language given by $(a \mid b)^+$.

A simple regular language Exercise 1

 \triangleright Find a finite-state automaton that accepts the language given by $(a \mid b)^+$.



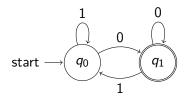
▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Even binary numbers

 \triangleright Find a finite-state automaton that accepts the even binary numbers (e.g., 0, 10, 100, 110, ...).

Even binary numbers

 \triangleright Find a finite-state automaton that accepts the even binary numbers (e.g., 0, 10, 100, 110, ...).



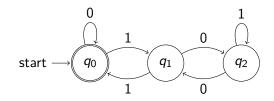
▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Binary numbers divisible by three Exercise 3

 \triangleright Find a finite-state automaton that accepts all binary numbers divisible by three.

Binary numbers divisible by three Exercise 3

 \triangleright Find a finite-state automaton that accepts all binary numbers divisible by three.



▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

All but one Exercise 4

 \triangleright Find a regular expression that describes the language of all words over alphabet $\{a, b, c\}$ which contain at most two of the three symbols (e.g., *a*, *acac*, *ccccbbbbbb*, ...).

All but one Exercise 4

 \triangleright Find a regular expression that describes the language of all words over alphabet $\{a, b, c\}$ which contain at most two of the three symbols (e.g., *a*, *acac*, *ccccbbbbbb*, ...).

```
(a \mid b)^* \mid (a \mid c)^* \mid (b \mid c)^*
```

All but one Exercise 4

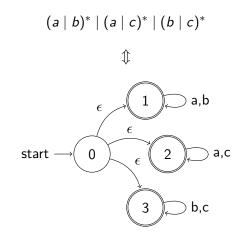
 \triangleright Find a regular expression that describes the language of all words over alphabet $\{a, b, c\}$ which contain at most two of the three symbols (e.g., *a*, *acac*, *ccccbbbbbb*, ...).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

```
(a \mid b)^* \mid (a \mid c)^* \mid (b \mid c)^*
```

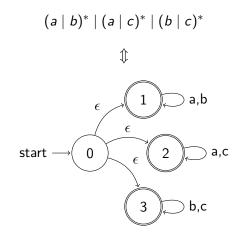
▷ Find an NFA which accepts the language.

All but one: NFA Exercise 4



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

All but one: NFA Exercise 4



▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

▷ What does an equivalent DFA look like?

Recap: Determinization

For each NFA $\langle \Sigma, Q, q_0, \delta, F \rangle$ there is an equivalent DFA $\langle \Sigma, 2^Q, q_0', \delta', F' \rangle$ with

$$egin{aligned} q_0' &= \mathcal{E}(q_0), \ \delta'(q', a) &= igcup_{\exists q_1 \in q'} \mathcal{E}(\delta(q_1, a)), ext{ and } \ \mathcal{F}' &= \{q' \mid q' \in 2^Q \land q' \cap \mathcal{F}
eq \emptyset\}. \end{aligned}$$

Recap: Determinization

For each NFA $\langle \Sigma, Q, q_0, \delta, F \rangle$ there is an equivalent DFA $\langle \Sigma, 2^Q, q_0', \delta', F' \rangle$ with

$$egin{aligned} q_0' &= E(q_0), \ \delta'(q',a) &= igcup_{\exists q_1 \in q'} E(\delta(q_1,a)), ext{ and } \ F' &= \{q' \mid q' \in 2^Q \land q' \cap F
eq \emptyset\}. \end{aligned}$$

Note that for undefined transitions on symbol a in state q we get

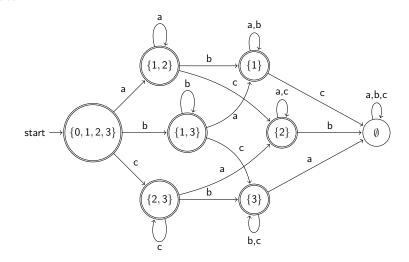
$$\delta'(\{q\},a)=\emptyset,$$

and similarly for the trap state \emptyset we get

$$\delta'(\emptyset,a)=\emptyset.$$

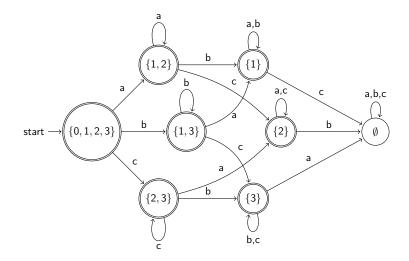
▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

All but one: DFA Exercise 4



▲ロト ▲母 ト ▲目 ト ▲目 ト ● ○ ○ ○ ○ ○

All but one: DFA Exercise 4



◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

> What is the significance of the intermediate states?

We can *minimize* DFAs by collapsing *equivalent* states.

We will consider two states s_1 and s_2 equivalent, if they are indistinguishable wrt. acceptance.

That is, s_1 is equivalent to s_2 , if, for any word w, following the automaton's transitions from state s_1 , respectively s_2 , we end up in two accepting or two rejecting states.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Recap: Minimization

In the lecture we already touched upon one algorithm for minimizing DFAs:

We use a table to gradually mark all non-equivalent pairs of states.

1. *Initialize* the table by marking all pairs of states where one is accepting and the other is not.

- 2. For every symbol *a* and for every pair of states s_1 and s_2 , mark the pair, if $\delta(s_1, a)$ is not equivalent to $\delta(s_2, a)$.
- 3. *Repeat* the second step until no more additional non-equivalent pairs are found.

Recap: Minimization

In the lecture we already touched upon one algorithm for minimizing DFAs:

We use a table to gradually mark all non-equivalent pairs of states.

1. *Initialize* the table by marking all pairs of states where one is accepting and the other is not.

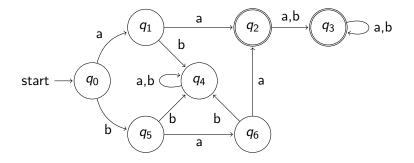
- 2. For every symbol *a* and for every pair of states s_1 and s_2 , mark the pair, if $\delta(s_1, a)$ is not equivalent to $\delta(s_2, a)$.
- 3. *Repeat* the second step until no more additional non-equivalent pairs are found.

How do you extract the minimal DFA from this table?Is the resulting DFA unique?

Minimization

Exercise 5

 \triangleright Minimize the following DFA.



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Minimization

Exercise 5

Minimized:

