Abstract Interpretation

Lattice

Partial order: binary relation \leq (subset of some D^{2}) which is

- reflexive: $x \leq x$
- anti-symmetric: $x \leq y / \backslash y \leq x->x=y$
- transitive: $x \leq y / \backslash y \leq z->x \leq z$

Lattice is a partial order in which every two-element set has least among its upper bounds and greatest among its lower bounds

- Lemma: if (D, \leq) is lattice and D is finite, then lub and glb exist for every finite set

$$
\Pi \sqcup \quad \sqcup\{a, b, c\}
$$

Graphs and Partial Orders

- If the domain is finite, then partial order can be represented by directed graphs
- if $x \leq y$ then draw edge from x to y
- For partial order, no need to draw $x \leq z$ if $x \leq y$ and $y \leq z$. So we only draw non-transitive edges
- Also, because always $x \leq x$, we do not draw those self loops
- Note that the resulting graph is acyclic: if we had a cycle, the elements must to be equal

Domain of Intervals [abb] where $a, b \in\{-M,-127,0,127, M-1\}$

Defining Abstract Interpretation

Abstract Domain D describing which information to compute - this is often a lattice

- inferred types for each variable: $\mathrm{x}: \mathrm{T1}, \mathrm{y}: \mathrm{T} 2$
- interval for each variable $\mathrm{x}:[\mathrm{a}, \mathrm{b}], \mathrm{y}:\left[\mathrm{a}^{\prime}, \mathrm{b}^{\prime}\right]$

Transfer Functions, [[st]] for each statement st, how this statement affects the facts $D \rightarrow D$

- Example: $\quad j^{x:[a, b]} y:[c, d]$
$\llbracket x=x+2 \rrbracket(x:[a, b], \ldots)$ $=(x:[a+2, b+2], \ldots)$

$$
x=x+2
$$

$$
{ }_{0}^{\downarrow} x:[a+2, b+2], y:[c, d]
$$

For now, we consider arbitrary integer bounds for intervals

- Thus, we work with Bigint-s
- Often we must analyze machine integers
- need to correctly represent (and/or warn about) overflows and underflows
- fundamentally same approach as for unbounded integers
- For efficiency, many analysis do not consider arbitrary intervals, but only a subset of them W
- We consider as the domain
- empty set (denoted \perp, pronounced "bottom")
- all intervals [a,b] where a, b are integers and $a \leq b$, or where we allow $\mathrm{a}=-\infty$ and/or $\mathrm{b}=\infty$
- set of all integers $[-\infty, \infty]$ is denoted T, pronounced "top"

Find Transfer Function: Plus

Suppose we have only two integer variables: x, y

$$
\left\{\begin{array}{lll}
x:[a, b] & y:[c, d] & \text { If } a \leq x \leq b \quad c \leq y \leq d \\
x=x+y & & \text { and we execute } x=x+y \\
x:\left[a^{\prime}, b^{\prime}\right] & y:\left[c^{\prime}, d^{\prime}\right] & \text { then } x^{\prime}=x+y \\
y^{\prime} & =y \\
& & \text { so } \leq x^{\prime} \leq \\
& \leq y^{\prime} \leq
\end{array}\right.
$$

So we can let

$$
\begin{array}{ll}
a^{\prime}=a+c & b^{\prime}=b+d \\
c^{\prime}=c & d^{\prime}=d
\end{array}
$$

Find Transfer Function: Minus

Suppose we have only two integer variables: x, y

$$
\left\{\begin{array}{lll}
x:[a, b] \quad y:[c, d] & \text { If } \\
y=x-y & \text { and we execute } y=x-y \\
0 x:\left[a^{\prime}, b^{\prime}\right] \quad y:\left[c^{\prime}, d^{\prime}\right] & \text { then }
\end{array}\right.
$$

So we can let

$$
\begin{array}{ll}
a^{\prime}=a & b^{\prime}=b \\
c^{\prime}=a-d & d^{\prime}=b-c
\end{array}
$$

Transfer Functions for Tests
Tests egg. [$x>1$] come from translating if, while into CG
$x:[-10,10]$
if $(x>1)$ \{
x :

$$
y=1 / x
$$

\} else \{

$$
y=42
$$

\}

$$
\int_{0}^{x:[a, b] y:[c, d]} \begin{aligned}
& {[x>y]}
\end{aligned}
$$

Joining Data-Flow Facts

$$
\begin{aligned}
& x:[-10,10] \quad y:[-1000,1000] \\
& \text { if }(x>0)\{ \\
& x: \\
& y=x+100 \\
& x: \\
& \} \text { else }\{ \\
& x: \\
& y=-x-50 \\
& x: \\
& \} \\
& x:
\end{aligned}
$$

Handling Loops: Iterate Until Stabilizes

$x=1$
while $(x<10)$ \{
$x=x+2$
\}

Analysis Algorithm

var facts : Map[Node,Domain] = Map.withDefault(empty) facts(entry) = initialValues
while (there was change) pick edge (v1,statmt,v2) from CFG such that facts(v1) has changed facts(v2)=facts(v2) join transferFun(statmt, facts(v1)) \} u
Order does not matter for the end result, as long as we do not permanently neglect any edge whose source was changed.


```
var facts : Map[Node,Domain] = Map.withDefault(empty)
var worklist : Queue[Node] = empty
    def assign(v1:Node,d:Domain) = if (facts(v1)!=d) {
        facts(v1)=d
        for (stmt,v2) <- outEdges(v1) { worklist.add(v2) }
}
assign(entry, initialValues)
while (!worklist.isEmpty) {
    var v2 = worklist.getAndRemoveFirst
    update = facts(v2)
    for (v1,stmt) <- inEdges(v2)
        { update = update join transferFun(facts(v1),stmt) }
    assign(v2, update)
}
```

Work List Version

Exercise: Run range analysis, prove that error is unreachable

```
int M = 16;
int[M] a;
x := 0;
while (x<10) {
    x := x + 3;
} checks array accesses
if (x>=0) {
    if (x <= 15)
        a[x]=7;
    else
        error;
} else {
    error;
}
```

Range analysis results

Simplified Conditions

Remove Trivial Edges, Unreachable Nodes

Constant Propagation Domain

Domain values D are:

- intervals [a,a], denoted simply 'a'
- empty set, denoted \perp and set of all integers T

Formally, if Z denotes integers, then

$$
D=\{\perp, T\} \cup\{a \mid a \in \mathbf{Z}\}
$$

D is an infinite set

Constant Propagation Transfer Functions

For each variable (x, y, z) and each CFG node (program point) we store: \perp, a constant, or \dagger
abstract class Element case class Top extends Element case class Bot extends Element case class Const(v:Int) extends Element var facts : Map[Nodes,Map[VarNames,Element]]
what executes during analysis of $x=y+z$:
oldY = facts $\left(v_{1}\right)(" y ")$
oldZ = facts(v_{1})("z")
newX = tableForPlus(oldY, oldZ)
facts $\left(v_{2}\right)=$ facts $\left(\mathrm{v}_{2}\right)$ join facts $\left(\mathrm{v}_{1}\right)$.updated(" x^{\prime}, newX) $\}$
def tableForPlus(y:Element, z:Element) $=(\mathrm{x}, \mathrm{y})$ match $\{$ case (Const(cy),Const(cz)) => Const(cy+cz)
case (Bot,_) => Bot case (_,Bot) => Bot
case (Top,Const(cz)) => Top
case (Const(cy),Top) => Top

Run Constant Propagation

What is the number of updates?
$x=1$
$n=1000$
while $(x<n)\{$
$x=x+2$
\}
$x=1$
$\mathrm{n}=$ readlnt()
while $(x<n)$ \{
$x=x+2$
\}

Observe

- Range analysis with end points $\mathrm{W}=\{-128,0,127\}$ has a finite domain
- Constant propagation has infinite domain (for every integer constant, one element)
- Yet, constant propagation finishes sooner!
- it is not about the size of the domain
- it is about the height

Height of Lattice: Length of Max. Chain

height=5
size $=14 \quad[-\infty, 127]$

height=2
size $=\infty$

Chain of Length n

- A set of elements $x_{0}, x_{1}, \ldots, x_{n}$ in D that are linearly ordered, that is $x_{0}<x_{1}<\ldots<x_{n}$
- A lattice can have many chains. Its height is the maximum n for all the chains
- If there is no upper bound on lengths of chains, we say lattice has infinite height
- Any monotonic sequence of distinct elements has length at most equal to lattice height
- including sequence occuring during analysis!
- such sequences are always monotonic

In constant propagation, each value can change only twice

$$
\begin{aligned}
& \text { height=2 } \\
& \text { size }=\infty
\end{aligned}
$$

consider value for x before assignment

- Initially: \perp
- changes $1^{\text {st }}$ time to: 1
- change $2^{\text {nd }}$ time to: T total changes: two (height)

$$
\begin{aligned}
& x=1 \\
& n=1000 \\
& \text { while }(x<n)\{ \\
& x=x+2 \\
& \}
\end{aligned}
$$

Total number of changes bounded by: height•|Nodes| $\cdot \mid$ Vars \mid
var facts : Map[Nodes,Map[VarNames,Element]]

Exercise

\mathbf{B}_{32} - the set of all 32-bit integers
What is the upper bound for number of changes in the entire analysis for:

- 3 variables,
- 7 program points
for these two analyses:

1) constant propagation for constants from \mathbf{B}_{32}
2) The following domain D :

$$
D=\{\perp\} \cup\left\{[a, b] \mid a, b \in \mathbf{B}_{32}, a \leq b\right\}
$$

Height of B_{32}

$D=\{\perp\} \cup\left\{[a, b] \mid a, b \in B_{32}, a \leq b\right\}$
One possible chain of maximal length:
\perp
[MinInt,MaxInt]

Initialization Analysis

first
initialization

initialized

What does javac say to this:

```
class Test {
    static void test(int p) {
        int n;
    p = p-1;
    if (p>0) {
    n = 100;
    }
    while (n != 0) {
    System.out.println(n);
    n = n - p;
        }
            Test.java:8: variable n might not have been initialized
                while (n>0) {
            ^
        1 \text { error}
```


Program that compiles in java

```
class Test {
    static void test(int p) {
        int n;
    p = p-1;
    if (p>0) {
        n = 100;
    }
    else {
        n = -100;
    }
while (n != 0) {
    System.out.println(n);
        n = n - p;
}

We would like variables to be initialized on all execution paths.

Otherwise, the program execution could be undesirably affected by the value that was in the variable initially.

We can enforce such check using initialization analysis.

\section*{What does javac say to this?}
```

static void test(int p) {
int n;
p = p-1;
if (p>0) {
n = 100;
}
System.out.println("Hello!");
if (p>0) {
while (n != 0) {
System.out.println(n);
n = n - p;
}
}
}

```

Initialization Analysis
```

class Test {
static void test(int p) {
T indicates presence of flow from states where
variable was not initialized:
int n;\leftarrow
p = p-1;
if (p>0){
n = 100;
}
else {
n = -100;
}
while (n != 0) {
System.out.println(n);
n = n - p;
}
- If variable is possibly uninitialized, we use T
- Otherwise (initialized, or unreachable): }
analyze:

```

```

\} If var occurs anywhere but left-hand side

Sketch of Initialization Analysis

- Domain: for each variable, for each program point: $D=\{\perp, T\}$
- At program entry, local variables: T ; parameters: \perp
- At other program points: each variable: \perp
- An assignment $x=e$ sets variable x to \perp
- lub (join, \downarrow) of any value with T gives $T \quad T \sqcup \perp=T$
- uninitialized values are contagious along paths
$-\perp$ value for x means there is definitely no possibility for accessing uninitialized value of x

Run initialization analysis Ex. 1

Run initialization analysis Ex. 2

int n ;
$\mathrm{p}=\mathrm{p}-1$;
if $(p>0)$ \{
$n=100 ;$
\}
if $(p>0)$ \{
$\mathrm{n}=\mathrm{n}-\mathrm{p}$;
\}

Liveness Analysis

Variable is dead if its current value will not be used in the future. If there are no uses before it is reassigned or the execution ends, then the variable is surely dead at a given point.
first
initialization
last use

What is Written and What Read

Example:

Purpose:

$$
\begin{aligned}
& i\{z\} \\
& x=42 \\
& \left\{\begin{array}{l}
\{x, z\} \\
y=x+3 \\
0 \\
\{x, y, z\} \\
z=y+z
\end{array}\right. \\
& \begin{array}{l}
\downarrow z=y+z \\
\left\{\begin{array}{l}
z \\
\{x\} \\
y=3+x \\
0
\end{array}\right.
\end{array}
\end{aligned}
$$

Register allocation:
find good way to decide which variable should go to which register at what point in time.

How Transfer Functions Look
L_{θ}-set of live variables

$$
\begin{aligned}
& \prod_{{ }^{0} L_{2}}^{L_{0}} L_{(s t)} \\
& L_{0}=\left(L_{2} \backslash\{x\}\right) \cup\{x, y\}
\end{aligned}
$$

$$
\begin{aligned}
& 0 L_{0}=L_{1} \cup\{x, y\} \\
& \operatorname{read}(x, y) \\
& 0=L_{2} \backslash\{x\} \\
& !\text { write }(x) \\
& 0 \\
& L_{2}
\end{aligned}
$$

Generally

$$
L_{0}=\left(L_{2} \backslash \operatorname{def}(s t)\right) \cup \text { use }(s t)
$$

Initialization: Forward Analysis

while (there was change) pick edge (v 1, statmt, v2) from CFG such that facts(v1) has changed

facts(v2)=facts(v2) join transferFun(statmt, facts(v1)) \}

Liveness: Backward Analysis
while (there was change)
pick edge (v 1, statmt,v2) from CFG
such that facts(v2) has changed
facts(v1)=facts(v1) join transferFun(statmt, facts(v2))

$$
\begin{aligned}
& \text { Example } \\
& x=m[0]-\phi \\
& x, y, x y, z, y z, x z, \text { res } 1 \\
& y=m[1] \\
& x y=x^{*} y \quad\{x, y, x y\} \\
& z=m[2] \quad\{x, z, y, x y\} \\
& y z=y^{*} z\{x, z, x y, y z\} \\
& x z=x^{*} z \quad\{x z, x y, y z\} \\
& \text { rest = by + yo } \\
& m[3]=r e s 1+x z
\end{aligned}
$$

Register Machines

Better for most purposes than stack machines

- closer to modern CPUs (RISC architecture)
- closer to control-flow graphs
- simpler than stack machine (but register set is finite)

Examples:
ARM architecture
RISC V: http://riscv.org/

Directly Addressable RAM

large - GB, slow even with cache

A few fast registers

$$
\begin{gathered}
\mathrm{R} 0, \mathrm{R} 1, \ldots, \mathrm{R} \\
31
\end{gathered}
$$

Basic Instructions of Register Machines

$\mathrm{R}_{\mathrm{i}} \leftarrow \operatorname{Mem}\left[\mathrm{R}_{\mathrm{j}}\right] \quad$ load
$\operatorname{Mem}\left[R_{j}\right] \leftarrow R_{i} \quad$ store
$\mathrm{R}_{\mathrm{i}} \leftarrow \mathrm{R}_{\mathrm{j}} * \mathrm{R}_{\mathrm{k}} \quad$ compute: for an operation *

Efficient register machine code uses as few loads and stores as possible.

State Mapped to Register Machine

Both dynamically allocated heap and stack expand

- heap need not be contiguous; can request more memory from the OS if needed
- stack grows downwards

Heap is more general:

- Can allocate, read/write, and deallocate, in any order
- Garbage Collector does deallocation automatically
- Must be able to find free space among used one, group free blocks into larger ones (compaction),... Stack is more efficient:
- allocation is simple: increment, decrement
- top of stack pointer (SP) is often a register
- if stack grows towards smaller addresses:

Exact picture may depend on
hardware and OS

JVM vs General Register Machine Code Naïve Correct Translation

JVM:
Register
Machine:
imul
$R 1 \leftarrow \operatorname{Mem}[S P]$
$S P=S P+4$
$R 2 \leftarrow \operatorname{Mem}[S P]$
$R 2 \leftarrow R 1 * R 2$
Mem $[S P] \leftarrow R 2$

Register Allocation

How many variables?

x,y,z,xy,xz,res1

Do we need 6 distinct registers if we wish to avoid load and stores?

$$
\begin{array}{lll}
x=m[0] & 7 \text { variables: } & x=m[0]
\end{array} \quad \text { can do it with } 5 \text { only! }
$$

Idea of Register Allocation

program:

$$
x=m[0] ; \quad y=m[1] ; \quad x y=x^{*} y ; \quad z=m[2] ; \quad y z=y^{*} z ; \quad x z=x^{*} z ; \quad r=x y+y z ; \quad m[3]=r+x z
$$

live variable analysis result:
\{\}
$\{x\}$
$\{x, y\} \quad\{y, x, x y\}$
$\{y, z, x, x y\} \quad\{x, z, x y, y z\} \quad\{x y, y z, x z\}$
$\{r, x z\}$

Color Variables
 Avoid Overlap of Same Colors

program:

$$
x=m[0] ; \quad y=m[1] ; \quad x y=x^{*} y ; \quad z=m[2] ; \quad y z=y^{*} z ; \quad x z=x^{*} z ; \quad r=x y+y z ; \quad m[3]=r+x z
$$

live variable analysis result:

Each color denotes a register 4 registers are enough for this program

Color Variables Avoid Overlap of Same Colors

program:

$$
x=m[0] ; \quad y=m[1] ; \quad x y=x^{*} y ; \quad z=m[2] ; \quad y z=y^{*} z ; \quad x z=x^{*} z ; \quad r=x y+y z ; \quad m[3]=r+x z
$$

live variable analysis result:

\{\}	$\{\mathrm{x}\}$	$\{\mathrm{x}, \mathrm{y}\}$	$\{y, x, x y\}$	$\{y, z, x, x y\}$	$\{x, z, x y, y z\}$	\{xy,yz,xz\}	$\{r, x z\}$
x							
y							
z							
xy							
yz							
xz							
r							
R1	x						
R2							
R3			z				
R4							

Each color denotes a register
4 registers are enough for this 7-variable program

How to assign colors to variables?

program:

$$
x=m[0] ; \quad y=m[1] ; \quad x y=x^{*} y ; \quad z=m[2] ; \quad y z=y^{*} z ; \quad x z=x^{*} z ; \quad r=x y+y z ; \quad m[3]=r+x z
$$

live variable analysis result:

For each pair of variables determine if their lifetime overlaps = there is a point at which they are both alive. Construct interference graph

Edges between members of each set

program:

$$
x=m[0] ; \quad y=m[1] ; \quad x y=x^{*} y ; \quad z=m[2] ; \quad y z=y^{*} z ; \quad x z=x^{*} z ; \quad r=x y+y z ; \quad m[3]=r+x z
$$

live variable analysis result:

For each pair of variables determine if their lifetime overlaps = there is a point at which they are both alive. Construct interference graph

Final interference graph

program:

$$
x=m[0] ; \quad y=m[1] ; \quad x y=x^{*} y ; \quad z=m[2] ; \quad y z=y^{*} z ; \quad x z=x^{*} z ; \quad r=x y+y z ; \quad m[3]=r+x z
$$

live variable analysis result:

```
\(\left\{\begin{array}{lllllll}\{x\} & \{x, y\} & \{y, x, x y\} & \{y, z, x, x y\} & \{x, z, x y, y z\} & \{x y, y z, x z\} & \{r, x z\}\end{array}\right.\)

For each pair of variables determine if their lifetime overlaps = there is a point at which they are both alive. Construct interference graph


\section*{Coloring interference graph}
program:
\[
x=m[0] ; \quad y=m[1] ; \quad x y=x^{*} y ; \quad z=m[2] ; \quad y z=y^{*} z ; \quad x z=x^{*} z ; \quad r=x y+y z ; \quad m[3]=r+x z
\]
live variable analysis result:


Need to assign colors (register numbers) to nodes such that: if there is an edge between nodes, then those nodes have different colors.
\(\rightarrow\) standard graph vertex coloring problem


\section*{Idea of Graph Coloring}
- Register Interference Graph (RIG):
- indicates whether there exists a point of time where both variables are live
- look at the sets of live variables at all progrma points after running live-variable analysis
- if two variables occur together, draw an edge
- we aim to assign different registers to such these variables
- finding assignment of variables to K registers: corresponds to coloring graph using K colors

\title{
All we need to do is solve graph coloring problem
}

- NP hard
- In practice, we have heuristics that work for typical graphs
- If we cannot fit it all variables into registers, perform a spill:
store variable into memory and load later when needed

\section*{Heuristic for Coloring with K Colors}

\section*{Simplify:}

If there is a node with less than K neighbors, we will always be able to color it!
So we can remove such node from the graph (if it exists, otherwise remove other node)
This reduces graph size. It is useful, even though incomplete
(e.g. planar can be colored by at most 4 colors, yet can have nodes with many neighbors)


\section*{Heuristic for Coloring with K Colors}

\section*{Select}

Assign colors backwards, adding nodes that were removed
If the node was removed because it had <K neighbors, we will always find a color if there are multiple possibilities, we can choose any color


\section*{Use Computed Registers}
\[
\begin{aligned}
& x=m[0] \\
& y=m[1] \\
& x y=x^{*} y \\
& z=m[2] \\
& y z=y^{*} z \\
& x z=x^{*} z \\
& r=x y+y z \\
& m[3]=r e s 1+x z
\end{aligned}
\]

\(\mathrm{R} 1=\mathrm{m}[0]\)
\(R 2=m[1]\)
\(R 4=R 1 * R 2\)
\(R 3=m[2]\)
\(R 2=R 2 * R 3\)
\(R 3=R 1 * R 3\)
\(R 4=R 4+R 2\)
\(m[3]=R 4+R 3\)

\section*{Summary of Heuristic for Coloring}

Simplify (forward, safe):
If there is a node with less than K neighbors, we will always be able to color it! so we can remove it from the graph

Potential Spill (forward, speculative):
If every node has K or more neighbors, we still remove one of them we mark it as node for potential spilling. Then remove it and continue

Select (backward):
Assign colors backwards, adding nodes that were removed
If we find a node that was spilled, we check if we are lucky, that we can color it. if yes, continue
if not, insert instructions to save and load values from memory (actual spill).
Restart with new graph (a graph is now easier to color as we killed a variable)

\section*{Conservative Coalescing}

Suppose variables tmp1 and tmp2 are both assigned to the same register \(R\) and the program has an instruction:
\[
\mathrm{tmp} 2=\mathrm{tmp} 1
\]
which moves the value of tmp1 into tmp2. This instruction then becomes
\[
R=R
\]
which can be simply omitted!
How to force a register allocator to assign tmp1 and tmp2 to same register?
merge the nodes for tmp1 and tmp2 in the interference graph! this is called coalescing

But: if we coalesce non-interfering nodes when there are assignments, then our graph may become more difficult to color, and we may in fact need more registers!
Conservative coalescing: coalesce only if merged node of tmp1 and tmp2 will have a small degree so that we are sure that we will be able to color it (e.g. resulting node has degree < K)

\title{
Run Register Allocation Ex. 3 use 4 registers, coallesce j=i
}
\[
\begin{aligned}
& i=0 \\
& s=s+i \\
& i=i+b \\
& j=i \\
& s=s+j+b \\
& j=j+1
\end{aligned}
\]

Run Register Allocation Ex. 3 use 3 registers, coallesce \(\mathrm{j}=\mathrm{i}\)
\[
\begin{aligned}
& \{s, b\} \\
i= & 0 \\
& \{s, i, b\} \\
s= & s+i \\
& \{s, i, b\} \\
i= & i+b \\
& \{s, i, b\} \\
j= & i \\
& \{s, j, b\} \\
s= & s+j+b \\
& \{j\} \\
j= & j+1 \\
& \}
\end{aligned}
\]


\section*{Run Register Allocation Ex. 3 use 4 registers, coallesce j=i}
\[
\begin{aligned}
& s: 1-i, j: 2 \\
& \text { i }=0 \\
& \mathbf{s}=\mathbf{s}+\mathbf{i} \\
& \mathbf{i}=\mathbf{i}+\mathbf{b} \\
& \mathbf{j}=\mathbf{i} / / \text { pf! } \\
& \mathrm{s}=\mathrm{s}+\mathrm{j}+\mathrm{b} \\
& \mathrm{j}=\mathrm{j}+1 \\
& \begin{array}{l}
\mathrm{R} 2=0 \\
\mathrm{R} 1=\mathrm{R} 1+\mathrm{R} 2
\end{array} \\
& R 2=R 2+R 3 \\
& R 1=R 1+R 2+R 3 \\
& R 2=R 2+1
\end{aligned}
\]```

