
Follow sets. LL(1) Parsing Table



Exercise  Introducing Follow Sets
Compute nullable, first for this grammar:

stmtList ::= ε | stmt  stmtList 
stmt ::= assign | block 
assign ::= ID  =  ID  ; 
block ::= beginof  ID stmtList ID ends

Describe a parser for this grammar and explain how it 
behaves on this input:

beginof myPrettyCode 
              x = u; 
              y = v; 
      myPrettyCode ends



How does a recursive descent parser 
look like?

def stmtList = 
  if (???) {} what should the condition be?
  else { stmt; stmtList }
def stmt =
  if (lex.token == ID) assign
  else if (lex.token == beginof) block
  else error(“Syntax error: expected ID or beginonf”)
…
def block =
  { skip(beginof); skip(ID); stmtList; skip(ID); skip(ends) }



Problem Identified
stmtList ::= ε | stmt  stmtList 
stmt ::= assign | block 
assign ::= ID  =  ID  ; 
block ::= beginof  ID stmtList ID ends

Problem parsing stmtList: 
– ID could start alternative stmt stmtList 
– ID could follow stmt, so we may wish to parse ε 

that is, do nothing and return
• For nullable non-terminals, we must also 

compute what follows them



LL(1) Grammar - good for building 
recursive descent parsers 

• Grammar is LL(1) if for each nonterminal X
– first sets of different alternatives of X are disjoint
– if nullable(X), first(X) must be disjoint from follow(X) 

and only one alternative of X may be nullable
• For each LL(1) grammar we can build 

recursive-descent parser
• Each LL(1) grammar is unambiguous
• If a grammar is not LL(1), we can sometimes 

transform it into equivalent LL(1) grammar



Computing if a token can follow

first(B1 ... Bp) = {a Σ∈  | B1...Bp    ⇒... ⇒   aw }

follow(X) = {a Σ∈  | S    ⇒... ⇒   ...Xa... }

There exists a derivation from the start symbol 
that produces a sequence of terminals and 
nonterminals of the form  ...Xa...
(the token a follows the non-terminal X)



Rule for Computing Follow

Given X ::= YZ (for reachable X)
then first(Z)  ⊆ follow(Y)
and  follow(X)  ⊆ follow(Z)

now take care of nullable ones as well:

For each rule X ::= Y1 ... Yp ... Yq ... Yr

follow(Yp) should contain:
• first(Yp+1Yp+2...Yr)
• also follow(X) if  nullable(Yp+1Yp+2Yr)



Compute nullable, first, follow

stmtList ::= ε | stmt  stmtList 
stmt ::= assign | block 
assign ::= ID  =  ID  ; 
block ::= beginof  ID stmtList ID ends

Is this grammar LL(1)?



Conclusion of the Solution

The grammar is not LL(1) because we have 
• nullable(stmtList)
• first(stmt) ∩ follow(stmtList) = {ID} 

• If a recursive-descent parser sees ID, it does 
not know if it should 
– finish parsing stmtList or
– parse another stmt



Table for LL(1) Parser: Example

S ::= B EOF 
             (1)

B ::=  ε | B (B)
         (1)      (2)

EOF ( )

S {1} {1} {}

B {1} {1,2} {1}

nullable: B
first(S) = { (, EOF }
follow(S) = {}
first(B) = { ( }
follow(B) = { ), (, EOF }

Parsing table:

parse conflict - choice ambiguity:
grammar not LL(1)

empty entry:
when parsing S,
if we see ) ,
report error

1 is in entry because ( is in follow(B)
2 is in entry because ( is in first(B(B))



Table for LL(1) Parsing

Tells which alternative to take, given current token:
choice : Nonterminal x Token -> Set[Int]

A ::=  (1)  B1 ... Bp

       | (2)  C1 ... Cq

       | (3)  D1 ... Dr

For example, when parsing A and seeing token t
choice(A,t) = {2}  means: parse alternative 2   (C1 ... Cq )

choice(A,t) = {3}  means: parse alternative 3   (D1 ... Dr)

choice(A,t) = {}    means: report syntax error
choice(A,t) = {2,3} : not LL(1) grammar

if   t  first(∈ C1 ... Cq)   add 2
    to choice(A,t)
if   t  follow(A) add K to ∈
choice(A,t) where K is nullable



General Idea when parsing nullable(A)

A ::=  B1 ... Bp

       | C1 ... Cq

            | D1 ... Dr

def A = 
  if (token  ∈ T1) {
     B1 ... Bp

  else if (token  (∈ T2  U  TF)) {
     C1 ... Cq

  } else if (token  ∈ T3) {
     D1 ... Dr

  } // no else error, just returnwhere:
T1 = first(B1 ... Bp)
T2 = first(C1 ... Cq)
T3 = first(D1 ... Dr)
TF = follow(A)

Only one of the alternatives can be nullable (here: 2nd) 
T1, T2, T3, TF  should be pairwise disjoint sets of tokens.


