
Follow sets. LL(1) Parsing Table

Exercise Introducing Follow Sets
Compute nullable, first for this grammar:

stmtList ::= ε | stmt stmtList
stmt ::= assign | block
assign ::= ID = ID ;
block ::= beginof ID stmtList ID ends

Describe a parser for this grammar and explain how it
behaves on this input:

beginof myPrettyCode
 x = u;
 y = v;
 myPrettyCode ends

How does a recursive descent parser
look like?

def stmtList =
 if (???) {} what should the condition be?
 else { stmt; stmtList }
def stmt =
 if (lex.token == ID) assign
 else if (lex.token == beginof) block
 else error(“Syntax error: expected ID or beginonf”)
…
def block =
 { skip(beginof); skip(ID); stmtList; skip(ID); skip(ends) }

Problem Identified
stmtList ::= ε | stmt stmtList
stmt ::= assign | block
assign ::= ID = ID ;
block ::= beginof ID stmtList ID ends

Problem parsing stmtList:
– ID could start alternative stmt stmtList
– ID could follow stmt, so we may wish to parse ε

that is, do nothing and return
• For nullable non-terminals, we must also

compute what follows them

LL(1) Grammar - good for building
recursive descent parsers

• Grammar is LL(1) if for each nonterminal X
– first sets of different alternatives of X are disjoint
– if nullable(X), first(X) must be disjoint from follow(X)

and only one alternative of X may be nullable
• For each LL(1) grammar we can build

recursive-descent parser
• Each LL(1) grammar is unambiguous
• If a grammar is not LL(1), we can sometimes

transform it into equivalent LL(1) grammar

Computing if a token can follow

first(B1 ... Bp) = {a Σ∈ | B1...Bp ⇒... ⇒ aw }

follow(X) = {a Σ∈ | S ⇒... ⇒ ...Xa... }

There exists a derivation from the start symbol
that produces a sequence of terminals and
nonterminals of the form ...Xa...
(the token a follows the non-terminal X)

Rule for Computing Follow

Given X ::= YZ (for reachable X)
then first(Z) ⊆ follow(Y)
and follow(X) ⊆ follow(Z)

now take care of nullable ones as well:

For each rule X ::= Y1 ... Yp ... Yq ... Yr

follow(Yp) should contain:
• first(Yp+1Yp+2...Yr)
• also follow(X) if nullable(Yp+1Yp+2Yr)

Compute nullable, first, follow

stmtList ::= ε | stmt stmtList
stmt ::= assign | block
assign ::= ID = ID ;
block ::= beginof ID stmtList ID ends

Is this grammar LL(1)?

Conclusion of the Solution

The grammar is not LL(1) because we have
• nullable(stmtList)
• first(stmt) ∩ follow(stmtList) = {ID}

• If a recursive-descent parser sees ID, it does
not know if it should
– finish parsing stmtList or
– parse another stmt

Table for LL(1) Parser: Example

S ::= B EOF
 (1)

B ::= ε | B (B)
 (1) (2)

EOF ()

S {1} {1} {}

B {1} {1,2} {1}

nullable: B
first(S) = { (, EOF }
follow(S) = {}
first(B) = { (}
follow(B) = {), (, EOF }

Parsing table:

parse conflict - choice ambiguity:
grammar not LL(1)

empty entry:
when parsing S,
if we see) ,
report error

1 is in entry because (is in follow(B)
2 is in entry because (is in first(B(B))

Table for LL(1) Parsing

Tells which alternative to take, given current token:
choice : Nonterminal x Token -> Set[Int]

A ::= (1) B1 ... Bp

 | (2) C1 ... Cq

 | (3) D1 ... Dr

For example, when parsing A and seeing token t
choice(A,t) = {2} means: parse alternative 2 (C1 ... Cq)

choice(A,t) = {3} means: parse alternative 3 (D1 ... Dr)

choice(A,t) = {} means: report syntax error
choice(A,t) = {2,3} : not LL(1) grammar

if t first(∈ C1 ... Cq) add 2
 to choice(A,t)
if t follow(A) add K to ∈
choice(A,t) where K is nullable

General Idea when parsing nullable(A)

A ::= B1 ... Bp

 | C1 ... Cq

 | D1 ... Dr

def A =
 if (token ∈ T1) {
 B1 ... Bp

 else if (token (∈ T2 U TF)) {
 C1 ... Cq

 } else if (token ∈ T3) {
 D1 ... Dr

 } // no else error, just returnwhere:
T1 = first(B1 ... Bp)
T2 = first(C1 ... Cq)
T3 = first(D1 ... Dr)
TF = follow(A)

Only one of the alternatives can be nullable (here: 2nd)
T1, T2, T3, TF should be pairwise disjoint sets of tokens.

