Follow sets. LL(1) Parsing Table

Exercise Introducing Follow Sets

Compute nullable, first for this grammar:
stmtList ::= € | stmt stmtList
stmt ::= assign | block
assign ::=1D = ID ;
block ::= beginof ID stmtList ID ends

Describe a parser for this grammar and explain how it
behaves on this input:

beginof myPrettyCode
X = U;
y=V;
myPrettyCode ends

How does a recursive descent parser

look like?
def stmtList =
if (?77){} what should the condition be?
else { stmt; stmtList }
def stmt =

if (lex.token == ID) assign
else if (lex.token == beginof) block
else error(“Syntax error: expected ID or beginonf”)

def block =
{ skip(beginof); skip(ID); stmtList; skip(ID); skip(ends) }

Problem Identified

stmtList ::= € | stmt stmtList

stmt ::= assign | block

assign ::=ID = ID ;

block ::= beginof ID stmtList ID ends

Problem parsing stmtList:
= ID could start alternative stmt stmtList

= ID could follow stmt, so we may wish to parse €
that is, do nothing and return

® For nullable non-terminals, we must also
compute what follows them

LL(1) Grammar - good for building
recursive descent parsers

Grammar is LL(1) if for each nonterminal X

- first sets of different alternatives of X are disjoint

= if nullable(X), first(X) must be disjoint from follow(X)
and only one alternative of X may be nullable

For each LL(1) grammar we can build
recursive-descent parser

Each LL(1) grammar is unambiguous

If a grammar is not LL(1), we can sometimes
transform it into equivalent LL(1) grammar

Computing if a token can follow

first(B,...B))={a€X | B,...B, =...= aw]}
follow(X)={a€X | S =...= ..Xa..}

There exists a derivation from the start symbol
that produces a sequence of terminals and
nonterminals of the form ...Xa...

(the token a follows the non-terminal X)

Rule for Computing Follow

Given X:=YZ (for reachable X)

then first(Z) < follow(Y)
and follow(X) < follow(Z)

now take care of nullable ones as well:

Y, ...Y

Foreachrule X::=Y, .. Y .Y .Y

follow(Y) should contain:
o first(Y .Y .,..Y,)

p+2... r

¢ also follow(X) if nullable(Y .Y .Y)

p+l " p+t2 ' r

Compute nullable, first, follow

stmtList ::= € | stmt stmtList

stmt ::= assign | block

assign ::=ID = ID ;

block ::= beginof ID stmtList ID ends

s this grammar LL(1)?

Conclusion of the Solution

The grammar is not LL(1) because we have
* nullable(stmtList)

® first(stmt) N follow(stmtList) = {ID}

® |f a recursive-descent parser sees ID, it does
not know if it should

- finish parsing stmtList or
- parse another stmt

S:

B:

Table for LL(1) Parser: Example

= B EOF

(1)

= £ | B(B)

(1) (2)

nullable: B

first(S) = { (, EOF }
follow(S) = {}

first(B) ={ (}
follow(B) ={), (, EOF }

empty entry:
when parsing S,
if we see),
report error

Parsing table:

parse conflict - choice ambiguity:
grammar not LL(1)

1is in entry because (is in follow(B)
2 is in entry because (is in first(B(B))

Table for LL(1) Parsing

Tells which alternative to take, given current token:
choice : Nonterminal x Token -> Set[Int]

A= (1) B,... B, if t& ﬁrst(Cl... C,) add?2
@ C,...C, | to choice(A,t)
(3 D....D if t & follow(A) add K to
. choice(A,t) where K is nullable

For example, when parsing A and seeing token t

choice(At) = {2} means: parse alternative 2 (C,...C,)
choice(A,t) = {3} means: parse alternative 3 (D,...D)
choice(A,t) ={} means: report syntax error
choice(A,t) ={2,3} : not LL(1) grammar

General Idea when parsing nullable(A)

def A =

if (token € T1) {
A= B,...B] B,..B

TP
[C.C, | M) elseif (token € (T2 U T)) |
| D,...D, C, ... C.

} else if (token € T3) {
D,..D

where: }// no else error, just return
T1 = first(B, ... B)
T2 = first(C, ... C)
T3 = first(D, ... D))
T, = follow(A)

r

Only one of the alternatives can be nullable (here: 2nd)
T1,T2, T3, T, should be pairwise disjoint sets of tokens.

