Follow sets. LL(1) Parsing Table

Exercise Introducing Follow Sets

Compute nullable, first for this grammar:
stmtList ::= $=$ | stmt stmtList
stmt ::= assign | block
assign ::= ID = ID ;
block ::= beginof ID stmtList ID ends
Describe a parser for this grammar and explain how it behaves on this input:
beginof myPrettyCode

$$
\begin{gathered}
x=u ; \\
y=v ; \\
\text { myPrettyCode ends }
\end{gathered}
$$

How does a recursive descent parser

look like?

def stmtList = if (???) \{\} what should the condition be?
else \{ stmt; stmtList \}
def stmt =
if (lex.token == ID) assign
else if (lex.token == beginof) block else error("Syntax error: expected ID or beginonf")
def block =
\{ skip(beginof); skip(ID); stmtList; skip(ID); skip(ends) \}

Problem Identified

stmtList ::= \quad | stmt stmtList
stmt ::= assign | block
assign ::= ID = ID ;
block ::= beginof ID stmtList ID ends
Problem parsing stmtList:

- ID could start alternative stmt stmtList
- ID could follow stmt, so we may wish to parse $\boldsymbol{\varepsilon}$ that is, do nothing and return
- For nullable non-terminals, we must also compute what follows them

LL(1) Grammar - good for building recursive descent parsers

- Grammar is LL(1) if for each nonterminal X
- first sets of different alternatives of X are disjoint
- if nullable(X), first(X) must be disjoint from follow(X) and only one alternative of X may be nullable
- For each LL(1) grammar we can build recursive-descent parser
- Each LL(1) grammar is unambiguous
- If a grammar is not $\mathrm{LL}(1)$, we can sometimes transform it into equivalent $\mathrm{LL}(1)$ grammar

Computing if a token can follow

first $\left(B_{1} \ldots B_{p}\right)=\left\{a \in \Sigma \mid B_{1} \ldots B_{p} \Rightarrow \ldots \Rightarrow\right.$ aw $\}$ follow $(X)=\{\mathrm{a} \in \Sigma \mid \mathrm{S} \quad \Rightarrow \ldots \Rightarrow$...Xа... $\}$

There exists a derivation from the start symbol that produces a sequence of terminals and nonterminals of the form ...Ха... (the token a follows the non-terminal X)

Rule for Computing Follow

Given $\quad X::=Y Z \quad$ (for reachable X)
then first $(Z) \subseteq$ follow (Y) and follow $(X) \subseteq$ follow(Z) now take care of nullable ones as well:

For each rule $X::=Y_{1} \ldots Y_{p} \ldots Y_{q} \ldots Y_{r}$
follow $\left(Y_{p}\right)$ should contain:

- first $\left(Y_{p+1} Y_{p+2} \ldots Y_{r}\right)$
- also follow (X) if nullable $\left(Y_{p+1} Y_{p+2} Y_{r}\right)$

Compute nullable, first, follow

stmtList ::= ε | stmt stmtList
stmt ::= assign | block
assign ::= ID = ID ;
block ::= beginof ID stmtList ID ends

Is this grammar LL(1)?

Conclusion of the Solution

The grammar is not $\mathrm{LL}(1)$ because we have

- nullable(stmtList)
- first(stmt) \cap follow(stmtList) $=\{$ ID $\}$
- If a recursive-descent parser sees ID, it does not know if it should
- finish parsing stmtList or
- parse another stmt

Table for LL(1) Parser: Example

S ::= B EOF
 (1)
 $B::=\varepsilon \mid B(B)$
 (1)
 (2)

nullable: B
first(S) $=\{$ (, EOF $\}$
follow(S) $=\{ \}$
first(B) $=\{$ ($\}$
follow $(B)=\{),($, EOF $\}$
empty entry:
when parsing S,
if we see),
report error

Parsing table:

	EOF	()
S	$\{1\}$	$\{1\}$	$\{3$
B	$\{1\}$	$\{1,2\}$	$\{1\}$

parse conflict - choice ambiguity: grammar not LL(1)

1 is in entry because (is in follow(B) 2 is in entry because (is in first $(B(B)$)

Table for LL(1) Parsing

Tells which alternative to take, given current token: choice : Nonterminal x Token -> Set[Int]

$$
\begin{aligned}
A::= & \text { (1) } B_{1} \ldots B_{p} \\
& \mid \text { (2) } C_{1} \ldots C_{q} \\
& \text { | (3) } D_{1} \ldots D_{r}
\end{aligned}
$$

if $t \in \operatorname{first}\left(C_{1} \ldots C_{q}\right)$ add 2 to choice(A,t) if $\mathrm{t} \in$ follow(A) add K to choice (A, t) where K is nullable

For example, when parsing A and seeing token t choice $(A, t)=\{2\}$ means: parse alternative $2\left(C_{1} \ldots C_{q}\right)$ choice $(A, t)=\{3\}$ means: parse alternative $3\left(D_{1} \ldots D_{r}\right)$ choice $(A, t)=\{ \} \quad$ means: report syntax error choice $(A, t)=\{2,3\}$: not $\operatorname{LL}(1)$ grammar

General Idea when parsing nullable(A)

$$
\begin{aligned}
& A:= \\
& B_{1} \ldots B_{p} \\
& \mid C_{1} \ldots C_{q} \\
& \mid D_{1} \ldots D_{r}
\end{aligned}
$$

where:

$$
\begin{aligned}
& \mathrm{T} 1=\operatorname{first}\left(B_{1} \ldots B_{p}\right) \\
& \mathrm{T} 2=\operatorname{first}\left(C_{1} \ldots C_{q}\right) \\
& \mathrm{T} 3=\operatorname{first}\left(D_{1} \ldots D_{r}\right) \\
& T_{F}=\operatorname{follow}(A)
\end{aligned}
$$

$\operatorname{def} A=$

$$
\begin{aligned}
& \text { if (token } \in T \text { 1) }\{ \\
& B_{1} \ldots B_{p}
\end{aligned}
$$

$$
\text { else if (token } \left.\in\left(T 2 \cup T_{F}\right)\right)\{
$$

$$
C_{1} \ldots C_{q}
$$

$$
\} \text { else if (token } \in T 3 \text {) \{ }
$$

$$
D_{1} \ldots D_{r}
$$

\}// no else error, just return

Only one of the alternatives can be nullable (here: 2nd) $\mathrm{T} 1, \mathrm{~T} 2, \mathrm{~T} 3, \mathrm{~T}_{\mathrm{F}}$ should be pairwise disjoint sets of tokens.

