Follow sets. LL(1) Parsing Table

Exercise Introducing Follow Sets

Compute nullable, first for this grammar:
stmtList ::= $=$ | stmt stmtList
stmt ::= assign | block
assign ::= ID = ID ;
block ::= beginof ID stmtList ID ends
Describe a parser for this grammar and explain how it behaves on this input:
beginof myPrettyCode

$$
\begin{gathered}
x=u ; \\
y=v ; \\
\text { myPrettyCode ends }
\end{gathered}
$$

How does a recursive descent parser

look like?

def stmtList = if (???) \{\} what should the condition be?
else \{ stmt; stmtList \}
def stmt =
if (lex.token == ID) assign
else if (lex.token == beginof) block else error("Syntax error: expected ID or beginonf")
def block =
\{ skip(beginof); skip(ID); stmtList; skip(ID); skip(ends) \}

Problem Identified

stmtList ::= \quad | stmt stmtList
stmt ::= assign | block
assign ::= ID = ID ;
block ::= beginof ID stmtList ID ends
Problem parsing stmtList:

- ID could start alternative stmt stmtList
- ID could follow stmt, so we may wish to parse $\boldsymbol{\varepsilon}$ that is, do nothing and return
- For nullable non-terminals, we must also compute what follows them

LL(1) Grammar - good for building recursive descent parsers

- Grammar is LL(1) if for each nonterminal X
- first sets of different alternatives of X are disjoint
- if nullable(X), first(X) must be disjoint from follow(X) and only one alternative of X may be nullable
- For each LL(1) grammar we can build recursive-descent parser
- Each LL(1) grammar is unambiguous
- If a grammar is not $\mathrm{LL}(1)$, we can sometimes transform it into equivalent $\mathrm{LL}(1)$ grammar

Computing if a token can follow

first $\left(B_{1} \ldots B_{p}\right)=\left\{a \in \Sigma \mid B_{1} \ldots B_{p} \Rightarrow \ldots \Rightarrow\right.$ aw $\}$ follow $(X)=\{\mathrm{a} \in \Sigma \mid \mathrm{S} \quad \Rightarrow \ldots \Rightarrow$...Xа... $\}$

There exists a derivation from the start symbol that produces a sequence of terminals and nonterminals of the form ...Ха... (the token a follows the non-terminal X)

Rule for Computing Follow

Given $\quad X::=Y Z \quad$ (for reachable X)
then first $(Z) \subseteq$ follow (Y) and follow $(X) \subseteq$ follow(Z) now take care of nullable ones as well:

For each rule $X::=Y_{1} \ldots Y_{p} \ldots Y_{q} \ldots Y_{r}$
follow $\left(Y_{p}\right)$ should contain:

- first $\left(Y_{p+1} Y_{p+2} \ldots Y_{r}\right)$
- also follow (X) if nullable $\left(Y_{p+1} Y_{p+2} Y_{r}\right)$

Compute nullable, first, follow

stmtList ::= ε | stmt stmtList
stmt ::= assign | block
assign ::= ID = ID ;
block ::= beginof ID stmtList ID ends

Is this grammar LL(1)?

Conclusion of the Solution

The grammar is not $\mathrm{LL}(1)$ because we have

- nullable(stmtList)
- first(stmt) \cap follow(stmtList) $=\{$ ID $\}$
- If a recursive-descent parser sees ID, it does not know if it should
- finish parsing stmtList or
- parse another stmt

Table for LL(1) Parser: Example

S ::= B EOF
 (1)
 $B::=\varepsilon \mid B(B)$
 (1)
 (2)

nullable: B
first(S) $=\{$ (, EOF $\}$
follow(S) $=\{ \}$
first(B) $=\{$ ($\}$
follow $(B)=\{),($, EOF $\}$
empty entry:
when parsing S,
if we see),
report error

Parsing table:

	EOF	()
S	$\{1\}$	$\{1\}$	$\{3$
B	$\{1\}$	$\{1,2\}$	$\{1\}$

parse conflict - choice ambiguity: grammar not LL(1)

1 is in entry because (is in follow(B) 2 is in entry because (is in first $(B(B)$)

Table for LL(1) Parsing

Tells which alternative to take, given current token: choice : Nonterminal x Token -> Set[Int]

$$
\begin{aligned}
A::= & \text { (1) } B_{1} \ldots B_{p} \\
& \mid \text { (2) } C_{1} \ldots C_{q} \\
& \text { | (3) } D_{1} \ldots D_{r}
\end{aligned}
$$

if $t \in \operatorname{first}\left(C_{1} \ldots C_{q}\right)$ add 2 to choice(A,t) if $\mathrm{t} \in$ follow(A) add K to choice (A, t) where K is nullable

For example, when parsing A and seeing token t choice $(A, t)=\{2\}$ means: parse alternative $2\left(C_{1} \ldots C_{q}\right)$ choice $(A, t)=\{3\}$ means: parse alternative $3\left(D_{1} \ldots D_{r}\right)$ choice $(A, t)=\{ \} \quad$ means: report syntax error choice $(A, t)=\{2,3\}$: not $\operatorname{LL}(1)$ grammar

General Idea when parsing nullable(A)

$$
\begin{aligned}
& A:= \\
& B_{1} \ldots B_{p} \\
& \mid C_{1} \ldots C_{q} \\
& \mid D_{1} \ldots D_{r}
\end{aligned}
$$

where:

$$
\begin{aligned}
& \mathrm{T} 1=\operatorname{first}\left(B_{1} \ldots B_{p}\right) \\
& \mathrm{T} 2=\operatorname{first}\left(C_{1} \ldots C_{q}\right) \\
& \mathrm{T} 3=\operatorname{first}\left(D_{1} \ldots D_{r}\right) \\
& T_{F}=\operatorname{follow}(A)
\end{aligned}
$$

$\operatorname{def} A=$

$$
\begin{aligned}
& \text { if (token } \in T \text { 1) }\{ \\
& B_{1} \ldots B_{p}
\end{aligned}
$$

$$
\text { else if (token } \left.\in\left(T 2 \cup T_{F}\right)\right)\{
$$

$$
C_{1} \ldots C_{q}
$$

$$
\} \text { else if (token } \in T 3 \text {) \{ }
$$

$$
D_{1} \ldots D_{r}
$$

\}// no else error, just return

Only one of the alternatives can be nullable (here: 2nd) $\mathrm{T} 1, \mathrm{~T} 2, \mathrm{~T} 3, \mathrm{~T}_{\mathrm{F}}$ should be pairwise disjoint sets of tokens.

Algorithm for parsing arbitrary grammars Parse trees, syntax trees
Ambiguity and priorities

Chomsky's Classification of Grammars

On Certain Formal Properties of Grammars

(N. Chomsky, INFORMATION AND CONTROL 9., 137-167 (1959)
type 0: arbitrary string-rewrite rules equivalent to Turing machines!

$$
e \mathrm{X} b=>\mathrm{e} X \quad \text { e } X=>Y
$$

type 1: context sensitive, RHS always larger $\mathrm{O}(\mathrm{n})$-space Turing machines
$a \times b=>a c \times b$
type 2: context free - one LHS nonterminal
type 3: regular grammars (regular languages)

Parsing Context-Free Grammars

Decidable even for type 1 grammars, (by eliminating epsilons - Chomsky 1959)

We choose $O\left(n^{3}\right)$ CYK algorithm - simple

Better complexity possible:

General Context-Free Recognition in Less than Cubic Time, JOURNAL OF COMPUTER AND SYSTE M SCIENCES 10, 308--315 (1975)

- problem reduced to matrix multiplication - $\mathrm{n}^{\wedge} \mathrm{k}$ for k between 2 and 3

More practical algorithms known:

J. Earley An efficient context-free parsing algorithm, Ph.D. Thesis, Carnegie Mellon University, Pittsburgh, PA (1968)
can be adapted so that it automatically works in quadratic or linear time for better-behaved grammars

CYK Parsing Algorithm

C:
John Cocke and Jacob T. Schwartz (1970). Programming languages and their compilers: Preliminary notes. Technical report, Courant Institute of Mathematical Sciences, New York University.
Y :
Daniel H. Younger (1967). Recognition and parsing of context-free languages in time n^{3}. Information and Control 10(2): 189-208.

K:
T. Kasami (1965). An efficient recognition and syntax-analysis algorithm for context-free languages. Scientific report AFCRL-65-758, Air Force Cambridge Research Lab, Bedford, MA.

CYK Algorithm Can Handle Ambiguity

Why Parse General Grammars

- General grammars can be ambiguous: for some strings, there are multiple parser trees - Can be impossible to make grammar unambiguous
- Some languages are more complex than simple programming languages
-mathematical formulas:
$x=y \wedge z ? \quad(x=y) \wedge z \quad x=(y \wedge z)$
-natural language:
I saw the man with the telescope.
-future programming languages

Ambiguity 1

1)

2)

I saw the man with the telescope.

Ambiguity 2

Time flies like an arrow.
Indeed, time passes by quickly.
Those special "time flies" have an "arrow" as their favorite food.

You should regularly measure how fast the flies are flying, using a process that is much like an arrow.

Two Steps in the Algorithm

1) Transform grammar to normal form called Chomsky Normal Form

2) Parse input using transformed grammar dynamic programming algorithm

"a method for solving complex problems by breaking them down into simpler steps.
It is applicable to problems exhibiting the properties of overlapping subproblems"

Dynamic Programming to Parse Input

Assume Chomsky Normal Form, 3 types of rules:

$$
\begin{array}{ll}
S^{\prime} \rightarrow \varepsilon \mid S & \text { (only for the start non-terminal) } \\
N_{i} \rightarrow t & \text { (names for terminals) } \\
N_{i} \rightarrow N_{j} N_{k} & \text { (just } 2 \text { non-terminals on RHS) }
\end{array}
$$

Decomposing long input:
N_{i}
N_{j}
N_{k}

find all ways to parse substrings of length $1,2,3, \ldots$

Balanced Parentheses Grammar

Original grammar G

$$
\mathrm{B} \rightarrow \varepsilon|\mathrm{BB}|(\mathrm{B})
$$

Modified grammar in Chomsky Normal Form:

$$
\begin{aligned}
& B 1 \rightarrow \varepsilon|B B| O M \mid O C \\
& B \rightarrow B B|O M| O C \\
& M \rightarrow B C \\
& O \rightarrow '(' \\
& \left.C \rightarrow '^{\prime}\right)^{\prime}
\end{aligned}
$$

Terminals: ()
Nonterminals: B, B1, O, C, M, B

Parsing an Input

$\mathrm{B} 1 \rightarrow \varepsilon|\mathrm{BB}| \mathrm{OM} \mid \mathrm{OC}$
$\mathrm{B} \rightarrow \mathrm{BB}|\mathrm{OM}| \mathrm{OC}$
$\mathrm{M} \rightarrow \mathrm{BC}$
$\mathrm{O} \rightarrow$ '('
6

C \rightarrow ')'
5

4

3

2

1 | O | O | C | O | C | O | C | C |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $($ | $($ | $)$ | $($ | $)$ | $($ | $)$ | $)$ |

Algorithm Idea

w_{pq} - substring from p to q
$d_{p q}-$ all non-terminals that could expand to w_{pq} Initially d_{pp} has $\mathrm{N}_{\mathrm{w}(\mathrm{p}, \mathrm{p})}$
key step of the algorithm:
if $X \rightarrow Y Z$ is a rule, Y is in $d_{p r}$, and
Z is in $d_{(r+1) q}$
then put X into $d_{p q}$
($p<=r<q$),
in increasing value of (q-p)

Algorithm

INPUT: grammar G in Chomsky normal form word w to parse using G
OUTPUT: true iff (w in L(G))
$N=|w|$
var d: Array[N][N]
for $\mathrm{p}=1$ to $\mathrm{N}\{$
$\mathrm{d}(\mathrm{p})(\mathrm{p})=\{\mathrm{X} \mid \mathrm{G}$ contains $\mathrm{X}->\mathrm{w}(\mathrm{p})\}$
for q in $\{\mathrm{p}+1 . . \mathrm{N}\} \mathrm{d}(\mathrm{p})(\mathrm{q})=\{ \}\}$
for $\mathrm{k}=2$ to $\mathrm{N} / /$ substring length
for $\mathrm{p}=0$ to $\mathrm{N}-\mathrm{k} / /$ initial position
for $\mathrm{j}=1$ to $\mathrm{k}-1 / /$ length of first half
val $r=p+j-1 ;$ val $q=p+k-1$;
for ($\mathrm{X}::=\mathrm{Y} Z$) in G
if Y in $d(p)(r)$ and Z in $d(r+1)(\rho)$
$\mathrm{d}(\mathrm{p})(\mathrm{q})=\mathrm{d}(\mathrm{p})(\mathrm{q})$ union $\{\mathrm{X}\}$
return S in $d(0)(N-1)$

What is the running

 time as a function of grammar size and the size of input?O(

Number of Parse Trees

Let w denote word ()()()

-it has two parse trees
Give a lower bound on number of parse trees of the word w^{n} (n is positive integer)
w^{5} is the word ()()()()()()()()()()()()()()

CYK represents all parse trees compactly -can re-run algorithm to extract first parse tree, or enumerate parse trees one by one

