
Follow sets. LL(1) Parsing Table



Exercise  Introducing Follow Sets
Compute nullable, first for this grammar:

stmtList ::= ε | stmt  stmtList 
stmt ::= assign | block 
assign ::= ID  =  ID  ; 
block ::= beginof  ID stmtList ID ends

Describe a parser for this grammar and explain how it 
behaves on this input:

beginof myPrettyCode 
              x = u; 
              y = v; 
      myPrettyCode ends



How does a recursive descent parser 
look like?

def stmtList = 
  if (???) {} what should the condition be?
  else { stmt; stmtList }
def stmt =
  if (lex.token == ID) assign
  else if (lex.token == beginof) block
  else error(“Syntax error: expected ID or beginonf”)
…
def block =
  { skip(beginof); skip(ID); stmtList; skip(ID); skip(ends) }



Problem Identified
stmtList ::= ε | stmt  stmtList 
stmt ::= assign | block 
assign ::= ID  =  ID  ; 
block ::= beginof  ID stmtList ID ends

Problem parsing stmtList: 
– ID could start alternative stmt stmtList 
– ID could follow stmt, so we may wish to parse ε 

that is, do nothing and return
• For nullable non-terminals, we must also 

compute what follows them



LL(1) Grammar - good for building 
recursive descent parsers 

• Grammar is LL(1) if for each nonterminal X
– first sets of different alternatives of X are disjoint
– if nullable(X), first(X) must be disjoint from follow(X) 

and only one alternative of X may be nullable
• For each LL(1) grammar we can build 

recursive-descent parser
• Each LL(1) grammar is unambiguous
• If a grammar is not LL(1), we can sometimes 

transform it into equivalent LL(1) grammar



Computing if a token can follow

first(B1 ... Bp) = {a Σ∈  | B1...Bp    ⇒... ⇒   aw }

follow(X) = {a Σ∈  | S    ⇒... ⇒   ...Xa... }

There exists a derivation from the start symbol 
that produces a sequence of terminals and 
nonterminals of the form  ...Xa...
(the token a follows the non-terminal X)



Rule for Computing Follow

Given X ::= YZ (for reachable X)
then first(Z)  ⊆ follow(Y)
and  follow(X)  ⊆ follow(Z)

now take care of nullable ones as well:

For each rule X ::= Y1 ... Yp ... Yq ... Yr

follow(Yp) should contain:
• first(Yp+1Yp+2...Yr)
• also follow(X) if  nullable(Yp+1Yp+2Yr)



Compute nullable, first, follow

stmtList ::= ε | stmt  stmtList 
stmt ::= assign | block 
assign ::= ID  =  ID  ; 
block ::= beginof  ID stmtList ID ends

Is this grammar LL(1)?



Conclusion of the Solution

The grammar is not LL(1) because we have 
• nullable(stmtList)
• first(stmt) ∩ follow(stmtList) = {ID} 

• If a recursive-descent parser sees ID, it does 
not know if it should 
– finish parsing stmtList or
– parse another stmt



Table for LL(1) Parser: Example

S ::= B EOF 
             (1)

B ::=  ε | B (B)
         (1)      (2)

EOF ( )

S {1} {1} {}

B {1} {1,2} {1}

nullable: B
first(S) = { (, EOF }
follow(S) = {}
first(B) = { ( }
follow(B) = { ), (, EOF }

Parsing table:

parse conflict - choice ambiguity:
grammar not LL(1)

empty entry:
when parsing S,
if we see ) ,
report error

1 is in entry because ( is in follow(B)
2 is in entry because ( is in first(B(B))



Table for LL(1) Parsing

Tells which alternative to take, given current token:
choice : Nonterminal x Token -> Set[Int]

A ::=  (1)  B1 ... Bp

       | (2)  C1 ... Cq

       | (3)  D1 ... Dr

For example, when parsing A and seeing token t
choice(A,t) = {2}  means: parse alternative 2   (C1 ... Cq )

choice(A,t) = {3}  means: parse alternative 3   (D1 ... Dr)

choice(A,t) = {}    means: report syntax error
choice(A,t) = {2,3} : not LL(1) grammar

if   t  first(∈ C1 ... Cq)   add 2
    to choice(A,t)
if   t  follow(A) add K to ∈
choice(A,t) where K is nullable



General Idea when parsing nullable(A)

A ::=  B1 ... Bp

       | C1 ... Cq

            | D1 ... Dr

def A = 
  if (token  ∈ T1) {
     B1 ... Bp

  else if (token  (∈ T2  U  TF)) {
     C1 ... Cq

  } else if (token  ∈ T3) {
     D1 ... Dr

  } // no else error, just returnwhere:
T1 = first(B1 ... Bp)
T2 = first(C1 ... Cq)
T3 = first(D1 ... Dr)
TF = follow(A)

Only one of the alternatives can be nullable (here: 2nd) 
T1, T2, T3, TF  should be pairwise disjoint sets of tokens.



Algorithm for parsing arbitrary grammars
Parse trees, syntax trees
Ambiguity and priorities



Chomsky’s Classification of Grammars

On Certain Formal Properties of Grammars
(N. Chomsky, INFORMATION AND CONTROL 9., 137-167 (1959) 

type 0: arbitrary string-rewrite rules
equivalent to Turing machines!

e X b => e X e X => Y
type 1: context sensitive, RHS always larger

O(n)-space Turing machines
     a X b => a c X b

type 2: context free - one LHS nonterminal
type 3: regular grammars (regular languages)



Parsing Context-Free Grammars

Decidable even for type 1 grammars, 
(by eliminating epsilons - Chomsky 1959)

We choose O(n3) CYK algorithm - simple

Better complexity possible:
General Context-Free Recognition in Less than Cubic Time, JOURNAL OF COMPUTER AND SYSTE
M SCIENCES 10, 308--315 (1975)
  

- problem reduced to matrix multiplication - n^k for k between 2 and 3

More practical algorithms known:
J. Earley An efficient context-free parsing algorithm, Ph.D. Thesis, 
Carnegie Mellon University, Pittsburgh, PA (1968)

can be adapted so that it automatically works in quadratic or linear time 
for better-behaved grammars



CYK Parsing Algorithm
C:
John Cocke and Jacob T. Schwartz (1970).  Programming languages and their compilers: 
Preliminary notes. Technical report, Courant Institute of Mathematical Sciences, 
New York University. 

Y:
Daniel H. Younger (1967). Recognition and parsing of context-free languages in time n3. 
Information and Control 10(2): 189–208. 

K:
T. Kasami (1965). An efficient recognition and syntax-analysis algorithm for context-free 
languages. Scientific report AFCRL-65-758, Air Force Cambridge Research Lab, 
Bedford, MA. 



CYK Algorithm Can Handle 
Ambiguity



Why Parse General Grammars
•General grammars can be ambiguous: for 
some strings, there are multiple parser trees
•Can be impossible to make grammar 
unambiguous
•Some languages are more complex than 
simple programming languages

–mathematical formulas: 
x = y /\ z ? (x=y) /\ z              x = (y /\ z)
–natural language:

I saw the man with the telescope.
–future programming languages



Ambiguity 1

I saw the man with the telescope.

1)

2)



Ambiguity 2

Time flies like an arrow.

Indeed, time passes by quickly.

Those special “time flies” have an “arrow” as 
their favorite food.

You should regularly measure how fast the 
flies are flying, using a process that is much 
like an arrow.

…



Two Steps in the Algorithm

1) Transform grammar to normal form
called Chomsky Normal Form

2) Parse input using transformed grammar
dynamic programming algorithm

“a method for solving complex problems by breaking them down into simpler steps. 
It is applicable to problems exhibiting the properties of overlapping subproblems”



Dynamic Programming to Parse Input

Assume Chomsky Normal Form, 3 types of rules:
S’ → ε | S (only for the start non-terminal)
Ni → t (names for terminals)
Ni → Nj  Nk (just 2 non-terminals on RHS)

Decomposing long input:

find all ways to parse substrings of length 1,2,3,…

( ( ( ) ( ) ) ( ) ) ( ( ) )

Ni

Nk
Nj



Balanced Parentheses Grammar

Original grammar G
B → ε | B B | ( B )

Modified grammar in Chomsky Normal Form:
B1 → ε | B B | O M | O C
B  → B B | O M | O C
M → B C
O  → '(' 
C  → ')' 

Terminals: (  )  
Nonterminals:  B, B1, O, C, M, B



Parsing an Input
B1 → ε | B B | O M | O C
B  → B B | O M | O C
M → B C
O  → '(' 
C  → ')'

O O C O C O C C1

2

3

4

5

6

( ( ) ( ) ( ) )
1 2 3 4 5 6 8 9



Algorithm Idea

wpq – substring from p to q

dpq – all non-terminals that
         could expand to wpq

Initially  dpp has Nw(p,p)

key step of the algorithm:

if  X → Y Z  is a rule,
    Y is in dp r  , and
    Z is in d(r+1)q

then put X into dpq

 (p <= r < q), 
in increasing value of (q-p)



Algorithm
INPUT:  grammar G in Chomsky normal form 
               word w to parse using G
OUTPUT: true iff (w in L(G)) 
N = |w| 
var d : Array[N][N] 
for p = 1 to N { 
   d(p)(p) = {X | G contains X->w(p)} 
   for q in {p + 1 .. N} d(p)(q) = {} } 
for k = 2 to N // substring length 
  for p = 0 to N-k // initial position
    for j = 1 to k-1 // length of first half 
      val r = p+j-1; val q = p+k-1;
      for (X::=Y Z) in G
        if Y in d(p)(r) and Z in d(r+1)(q) 
           d(p)(q) = d(p)(q) union {X} 
return  S in d(0)(N-1)

( ( ) ( ) ( ) )

What is the running 
time as a function of 
grammar size and the 
size of input?

O(       )



Number of Parse Trees

Let w denote word ()()()
–it has two parse trees

Give a lower bound on number of parse 
trees of the word wn 

 (n is positive integer)
w5  is the word

()()() ()()() ()()() ()()() ()()()

CYK represents all parse trees compactly
–can re-run algorithm to extract first parse tree, 
or enumerate parse trees one by one


