Automating Construction of Lexers

Regular Expression to Programs

- Not all regular expressions are simple.
- How can we write a lexer for (a*b|a) ?
- Tokenizing aaaab Vs aaaaa

Finite State Automaton

 (Finite State Machine)- $A=\left(\Sigma, Q, q_{0}, \delta, F\right)$

$$
\delta \subseteq Q \times \Sigma \times Q
$$

$$
q_{0} \in Q
$$

$$
F \subseteq Q
$$

$$
\begin{aligned}
& q_{0} \in Q \\
& q_{1} \subseteq Q
\end{aligned}
$$

- Σ-alphabet $\left.\left(q_{1}, a, q_{1}\right),\left(q_{1}, b, q_{1}\right),\right\}$
- Q - states (nodes in the graph)
- q_{0} - initial state (with '->' sign in drawing)
- δ - transitions (labeled edges in the graph)
- F - final states (double circles)

Numbers with Decimal Point

digit digit* . digit digit*
What if the decimal part is optional?

Kinds of Finite State Automata

-DFA: δ is a function : $(Q, \Sigma) \mapsto Q$

- NFA:
δ could be a relation
- In NFA there is no unique next state. We have a set of possible next states.

Remark: Relations and Functions

- Relation $r \subseteq B \times C$

$$
r=\{\ldots,(b, c 1),(b, c 2), \ldots\}
$$

- Corresponding function: $\mathrm{f}: \mathrm{B}$-> 2^{c} $f=\{\ldots(b,\{c 1, c 2\}) . .$.
$f(b)=\{c \mid(b, c) \in r\}$
- Given a state, next-state function returns the set of new states
- for deterministic automaton, the set has exactly 1 element

Allowing Undefined Transitions

- Undefined transitions lead to a sink state from where no input can be accepted

Allowing Epsilon Transitions

- Epsilon transitions:
-traversing them does not consume anything
- Transitions labeled by a word:
-traversing them consumes the entire word

Interpretation of Non-Determinism

- A word is accepted if there is a path in the automaton that leads to an accepting state on reading the word
Eg.

- Does the automaton accept 'a' ?
- yes

Exercise

- Construct a NFA that recognizes all strings over $\{a, b\}$ that contain "aba" as a substring

Running NFA (without epsilons) in

Scala

def $\delta(q:$ State, $a: C h a r): \operatorname{Set}[$ States $]=\{\ldots\}$ def $\delta^{\prime}(S: S e t[S t a t e s], a: C h a r):$ Set[States] = \{ for (q1 <-S, q2 <- $\delta(q 1, a)$) yield q2 \}
def accepts(input : MyStream[Char]) : Boolean = \{
var S : Set[State] = Set(q0) // current set of states
while (!input.EOF) \{
val a = input.current
$S=\delta^{\prime}(\mathrm{S}, \mathrm{a}) \quad / /$ next set of states
\}
!(S.intersect(finalStates).isEmpty)

NFA Vs DFA

- For every NFA there exists an equivalent DFA that accepts the same set of strings
- But, NFAs could be exponentially smaller (succinct)
- There are NFAs such that every DFA equivalent to it has exponentially more number of states

Regular Expressions and Automata

Theorem:

If L is a set of words, it is describable by a regular expression iff (if and only if) it is the set of words accepted by some finite automaton.

Algorithms:

- regular expression \rightarrow automaton (important!)
- automaton \rightarrow regular expression (cool)

Recursive Constructions

- Union

Concatenation

Recursive Constructions

- Star

Exercise: (aa)* | (aaa)*

- Construct an NFA for the regular expression

NFAs to DFAs (Determinisation)

- keep track of a set of all possible states in which the automaton could be
- view this finite set as one state of new automaton

NFA to DFA Conversion

Possible states of the DFA: 2^{Q}
$\{\},\{0\}, \ldots\{12\},\{0,1\}, \ldots,\{0,12\}, \ldots\{12,12\}$, $\{0,1,2\} \ldots,\{0,1,2 \ldots, 12\}\}$

NFA to DFA Conversion

NFA to DFA Conversion

-DFA: $\left(\Sigma, 2^{Q}, q_{0}^{\prime}, \delta^{\prime}, F^{\prime}\right)$

$$
\cdot q_{0}^{\prime}=E\left(q_{0}\right)
$$

- $\delta^{\prime}\left(q^{\prime}, a\right)=\bigcup_{\left\{\exists q_{1} \in q^{\prime}, \delta\left(q_{1}, a, q_{2}\right)\right\}} E\left(q_{2}\right)$
- $F^{\prime}=\left\{q^{\prime} \mid q^{\prime} \in 2^{Q}, q^{\prime} \cap F \neq \varnothing\right\}$

NFA to DFA Conversion

NFA to DFA Example

Clarifications

- what happens if a transition on an alphabet ' a ' is not defined for a state ' q ' ?
- $\delta^{\prime}(\{q\}, a)=\varnothing$
- $\delta^{\prime}(\emptyset, a)=\varnothing$
- Empty set represents a state in the NFA
- It is a trap/sink state: a state that has selfloops for all symbols, and is non-accepting.

Minimizing DFAs to Keep Them Small

- First, throw away all unreachable states: those for which there is no path to them from the initial state

Minimizing DFAs: Procedure

- Write down all pairs of state as a table
- Every cell in the table denotes whether the corresponding states are equivalent

	q1	q2	q3	$q 4$	$q 5$
q1	x	$?$	$?$	$?$	$?$
q2		x	$?$	$?$	$?$
q3			x	$?$	$?$
q4				x	$?$
q5					x

Minimizing DFAs: Procedure

- Inititalize cells (q1, q2) to false if one of them is final and other is non-final
- Make the cell (q1, q2) false, if q1 -> q1' on some alphabet symbol and q2 -> q2' on 'a' and q1' and q2' are not equivalent
- Iterate the above process until all non-equivalent states are found

Minimizing DFAs: Illustration

Minimizing DFAs: Illustration

Minimizing DFAs: Illustration

Minimizing DFAs: Illustration

Minimizing DFAs: Procedure

- Write down all pairs of state as a table
- Every cell in the table denotes whether the corresponding states are equivalent

	q1	q2	q3	$q 4$	$q 5$
q1	x	$?$	$?$	$?$	$?$
q2		x	$?$	$?$	$?$
q3			x	$?$	$?$
q4				x	$?$
q5					x

Properties of Automata

Complement:

- Given a DFA A, switch accepting and non-accepting states in A gives the complement automaton A^{c}
- $\mathrm{L}\left(\mathrm{A}^{\mathrm{c}}\right)=\left(\Sigma^{*} \backslash L(A)\right)$

Note this does not work for NFA

Intersection: $\mathrm{L}\left(\mathrm{A}^{\prime}\right)=L\left(A_{1}\right) \cap L\left(A_{2}\right)$

$$
\begin{aligned}
& -A^{\prime}=\left(\Sigma, Q_{1} \times Q_{2},\left(q_{0}^{1}, q_{0}^{2}\right), \delta^{\prime}, F_{1} \times F_{2}\right) \\
& -\delta^{\prime}\left(\left(q_{1}, q_{2}\right), a\right)=\delta\left(q_{1}, a\right) \times \delta\left(q_{2}, a\right)
\end{aligned}
$$

Exercise 0.1: on Equivalence

Prove that $\left(a^{*} b^{*}\right)^{*}$ is equivalent to (a|b)*

Sequential Circuits are Automata

$A=\left(\Sigma, Q, q_{0}, \delta, F\right)$

Q - states of flip-flops, registers, etc.
δ - combinational circuit that determines next state

