
.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

CS-320
Computer Language Processing

Exercise Session 5

November 8, 2017

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Overview

In today’s exercise you will
▶ perform type inference on some examples seen in the lecture,
▶ see how we can actually encode pairs using functions, and
▶ learn about some simple forms of subtyping.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Recap: Type-inference

In this week’s lecture we heard about type inference, which allows
us to enjoy the safety of type systems without requiring explicit
type annotations in the program.

We saw anonymous functions:
(x ⇒ x)

This one corresponds to the identity function:
def id(x) = x

Using type inference we can find a function’s most general type:

∀X. X → X

Such type schemata can be instantiated with different types:
if (id(true)) id(1) else id(2)

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Finding the most general type
Exercise 1

▷ Find the most general type for each of the following functions:
def S(x, y, z) = (x(z))(y(z))

def cm(f, g) = x ⇒ f(g(x))

def cr(f) = x ⇒ (y ⇒ f(x,y))

def uncr(f) =
p ⇒ (f(P1(p)))(P2(p))

def pr(x, y) = c ⇒ (c(x))(y)

def c1(p) = p(x ⇒ (y ⇒ x))

def c2(p) = p(x ⇒ (y ⇒ y))

def e(x, y) = c1(pr(x,y))

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Finding the most general type
Exercise 1 (solution)

S : ∀A, B, C. (A → B → C) → (A → B) → A → C

cm : ∀A, B, C. (A → B) → (B → C) → A → C

cr : ∀A, B, C. ((A × B) → C) → A → B → C

uncr : ∀A, B, C. (A → B → C) → (A × B) → C

pr : ∀A, B, C. A → B → (A → B → C) → C

c1 : ∀A, B, C. ((A → B → A) → C) → C

c2 : ∀A, B, C. ((A → B → B) → C) → C

e : ∀A, B. A → B → A

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Pairs

Recall that in the last lecture we had a language with pairs. That
is, we had pair types

T1 × T2

constructors for pair values

(t1, t2)

and extractors for the first and the second component

fst(p) snd(p)

It turns out that in an untyped language with anonymous functions
one can already encode pairs.
⇒ What about our typed language with anonymous functions?

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Pairs

Recall that in the last lecture we had a language with pairs. That
is, we had pair types

T1 × T2

constructors for pair values

(t1, t2)

and extractors for the first and the second component

fst(p) snd(p)

It turns out that in an untyped language with anonymous functions
one can already encode pairs.
⇒ What about our typed language with anonymous functions?

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Encoding pairs

Let us attempt to encode pairs in our language.

We will represent a pair as a function of type

Pair[A, B] = (A → B → C) → C

where the C will be the result type of the computation depending
on the pair.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Encoding pairs

Let us attempt to encode pairs in our language.

We will represent a pair as a function of type

Pair[A, B] = (A → B → C) → C

where the C will be the result type of the computation depending
on the pair.

We define functions to create pairs and extract their components:
def mkPair(a, b) = (f ⇒ f(a, b))
def fst(p) = p(a ⇒ b ⇒ a)
def snd(p) = p(a ⇒ b ⇒ b)

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Encoding pairs
Exercise 2

def mkPair(a, b) = (f ⇒ f(a, b))
def fst(p) = p(a ⇒ b ⇒ a)
def snd(p) = p(a ⇒ b ⇒ b)
def f(x, y) = true

Consider the following program along with the above definitions:
f(fst(mkPair(1, true)), snd(mkPair(1, true)))

▷ What is the result of type inference on this program?

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Encoding pairs
Exercise 2

def mkPair(a, b) = (f ⇒ f(a, b))
def fst(p) = p(a ⇒ b ⇒ a)
def snd(p) = p(a ⇒ b ⇒ b)
def f(x, y) = true

Consider the following program along with the above definitions:
f(fst(mkPair(1, true)), snd(mkPair(1, true)))

▷ What is the result of type inference on this program?

Now consider we only create a single pair:
def g(p) = f(fst(p), snd(p))
g(mkPair(1, true))

▷ What does type inference yield in this case?

Meaning of Types

• Operational view: Types are named entities

– such as the primitive types (Int, Bool etc.) and
explicitly declared classes, traits …

– their meaning is given by methods they have

– constructs such as inheritance establish
relationships between classes

• Mathematically, Types are sets of values

– Int = { ..., -2, -1, 0, 1, 2, ... }

– Boolean = { false, true }

– Int Int = { f : Int -> Int | f is computable }

Types as Sets

• Sets so far were disjoint

• Sets can overlap

Boolean

true, false

String

“Richard” “cat”

Int  Int

Int  Pos

Int

Pos (1, 2)

Neg (-1)

16 bit class C

class F

class D
class E

F extends D,

D extends C

C

ED

F

C represents not only declared C,

but all possible extensions as well

SUBTYPING

Subtyping

• Subtyping corresponds to subset

• Systems with subtyping have non-disjoint sets

• T1 <: T2 means T1 is a subtype of T2

– corresponds to T1  T2 in sets of values

• Rule for subtyping: analogous to set reasoning
In terms of sets

Int
Pos

Types for Positive and Negative Ints
Int = { ... , -2, -1, 0, 1, 2, ... }
Pos = { 1, 2, ... } (not including zero)

Neg = { ..., -2, -1 } (not including zero)

Pos <: Int

Neg <: Int
Pos  Int

Neg  Int

(y not zero)

(x/y well defined)

types: sets:

More Rules

More rules for division?

Making Rules Useful

• Let x be a variable

var x : Int

var y : Int

if (y > 0) {

if (x > 0) {

var z : Pos = x * y

res = 10 / z

} } type system proves: no division by zero

Subtyping Example

def f(x:Int) : Pos = {

if (x < 0) –x else x+1

}

var p : Pos

var q : Int

q = f(p)

Given:
Pos <: Int

 ⊢ f: Int Pos

Does this statement type check?

Subtyping Example

def f(x:Pos) : Pos = {

if (x < 0) –x else x+1

}

var p : Int

var q : Int

q = f(p)
Does this statement type check?

does not type check

What Pos/Neg Types Can Do

def multiplyFractions(p1 : Int, q1 : Pos, p2 : Int, q2 : Pos) : (Int,Pos) {

(p1*q1, q1*q2)

}

def addFractions(p1 : Int, q1 : Pos, p2 : Int, q2 : Pos) : (Int,Pos) {

(p1*q2 + p2*q1, q1*q2)

}

def printApproxValue(p : Int, q : Pos) = {

print(p/q) // no division by zero

}

More sophisticated types can track intervals of numbers and ensure
that a program does not crash with an array out of bounds error.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intersection types
(Exam question 2015)

⇒ Dedicated exercise sheet.

Problem 4: Intersection Types (25 points)

In this exercise, we will consider the notion of intersection of types. Let T1 and T2 be two types
belonging to our langauge. An expression has an intersection type T1 ∧ T2 iff it can be typed as
both T1 and T2. Therefore, we have the following type rules.

Γ ` e : T1 Γ ` e : T2

Γ ` e : T1 ∧ T2
Γ ` e : T1 ∧ T2

Γ ` e : T1

Γ ` e : T1 ∧ T2
Γ ` e : T2

We consider T1 ∧ T2 and T2 ∧ T1 to be the same. In the above rules T1 and T2 can also be
function types like R→ S.

a) [5 pts] If T1 and T2 are arbitrary types, consider the following three expressions denoting
types: T1 ∧ T2, T1, and T2. State all subtyping relations that you believe should hold
among the 3× 3 possible pairs of expressions.

Enter <: if the type corresponding to the row is a subtype of the type corresponding to the
column; enter / if this is not necessarily the case.

<: T1 T2 T1 ∧ T2
T1
T2

T1 ∧ T2

In the next part of the exercise, you are required to come up with a type derivation involving
intersection types. Consider a language, similar to the one descried in lecturecise 12, with arith-
metic operations, if-else expressions, assignment and block statements, that has the following
types: Pos, Neg, Int and Bool. (We provide all the type rules that you may need for this
exercise at the end of this question.)
Consider the function f shown below. Γ0 is the initial type environment before the beginning
of the function.

Γ0 = { divk : (Pos→ Pos) ∧ (Neg → Neg)}
def f(x : Int) : Int {
if(x > 0) divk(x)
else
if(x < 0) divk(x)
else x

}

divk is a function (e.g. like x => 10/x) that maps positive integers to positive integers and
negative integers to negative integers. Observe that with intersection types we can type the
function as (Pos→ Pos) ∧ (Neg → Neg).

b) [20 pts] Complete the type derivation for the body of the function f , shown on page 5,
by filling in the holes marked with ?. If the expression will not type check, show the step
where the type derivation cannot proceed. You will need to use only the type rules of
intersection types and the types rules shown below.

4

Type Rules:

(x, T) ∈ Γ

Γ ` x : T
Pos <: Int Neg <: Int

Γ ` e : T1 T1 <: T2

Γ ` e : T2

Γ ` e : T

Γ ` {e} : T

s1 : Unit Γ ` {s2; · · · sn} : T

Γ ` {s1; · · · ; sn} : T

Γ⊕ {(x, T)} ` {s2; · · · sn} : T

Γ ` {var x : T ; s2; · · · ; sn} : T

Γ ` x : Int Γ⊕ {(x, Pos)} ` e1 : T Γ ` e2 : T

Γ ` if(x > 0) e1 else e2 : T

Γ ` x : Int Γ⊕ {(x,Neg)} ` e1 : T Γ ` e2 : T

Γ ` if(x < 0) e1 else e2 : T

Γ ` b : Bool Γ ` e1 : T Γ ` e2 : T

Γ ` if(b) e1 else e2 : T

Γ ` e1 : T1 · · · Γ ` en : Tn Γ ` g : (T1 × · · · × Tn)→ T

Γ ` g(e1, · · · , en) : T

5

Γ1 ` x : Pos
?

Γ1 ` divk : ?

?

Γ1 ` divk(x) : Int

Γ ` x : Int

Γ2 ` x : Neg

?

?

?

Γ2 ` divk(x) : ?

Γ ` if(x < 0) divk(x) else x : Int

Γ ` if(x > 0) divk(x) else if(x < 0) divk(x) else x : Int

where,

Γ1 = ?

Γ2 = ?

6

