
End-of-Year Quiz
Compiler Construction, Fall 2013

Wednesday, December 18th, 2013

Last Name :

First Name :

Camipro Number :

Problem Points Rating

1 /20

2 /10

Total /30



General Instructions for This Quiz

• You have in total 3 hours 45 minutes.

• Have your CAMIPRO card ready on the desk.

• You are allowed to use any printed material that you brought yourself to the exam.
You are not allowed to use any notes that were not typed-up. Also, you are not
allowed to exchange the notes with other students taking the quiz.

• Write the answer of each question on a separate sheet, and not on the quiz question
sheets. Write your name on each sheet containing your answers.

• Return the printed question sheets back to us. Please rate each problem according
to your interest (0 stars: nothing to say. 1-star: Uninteresting problem. 5 stars:
Truly awesome problem)

• Use a permanent pen.

• We advise you to do the questions you know best first.

• You will perhaps discover that questions about type systems take longer to under-
stand, but not necessarily longer to solve.

1



Problem 1: Type Rules for Collections (20 points)

Consider the following typed language on immutable identifiers:

expr ::= val ident = expr; expr Variable binding (1)

expr ::= i where i is an integer constant (2)

expr ::= (ident : T )⇒ expr Creates an anonymous function (3)

expr ::= expr(expr) Applies a function (4)

T ::= Int Int type (5)

T ::= T ⇒ T Function type (6)

T ::= Collection[T ] Collection type (7)

For the purpose of this exercise, we add a polymorphic type Collection[T ] to the lan-
guage, where T can be any existing type. We extend the expression syntax with existing
customized function symbols:

expr ::= EmptyCol[α] Creates an empty collection of elements of type α (8)

expr ::= add(expr, expr) Adds an element to a collection (9)

expr ::= permute(expr) Returns a function from a collection (10)

expr ::= map(expr) Returns a function from a collection (11)

expr ::= flatMap(expr) Returns a function from a collection (12)

Informally, the semantics of the extensions is the following:

• EmptyCol[α] (line 8) takes a type parameter and returns an empty collection of this
type.

• add(e1, e2) (line 9) takes a collection e1 and an element e2 and returns the collection
e1 to which the element has been added.

• permute(expr) (line 10) takes a collection, and returns a function which is a permu-
tation mapping of the elements of the collection. See example below.

• map(expr) (line 11) takes a collection and returns a function. This function accepts
a mapping from an element to another element and returns the mapped original
collection.

• flatMap(expr) (line 12) takes a collection and returns a function. This function
accepts a mapping from an element to a collection of elements and returns the
union of all images of elements of the original collection.

For example, if x = add(add(add(EmptyCol[Int], 1), 2), 3), it could be that:

permute(x)(1) == 2

permute(x)(2) == 3

permute(x)(3) == 1

2



For any other integer, i, permute(x)(i) could be either 1, 2 or 3.
If collections were sets, we would also have the following (to illustrate):

map(x)(a⇒ 1) = {1}

flatMap(x)(a⇒ add(x, a+ 3)) = {1, 2, 3, 4, 5, 6}

map(x)(permute(x)) = map(x)((i : Int)⇒ permute(x)(i)) = x

The type rules for expressions are the following:

(x : T ) ∈ Γ

Γ ` x : T

Γ ` e : T Γ ` f : T ⇒ U

Γ ` f(e) : U

Γ ` e1 : T Γ, (x, T ) ` e2 : U

Γ ` (val x = e1; e2) : U

Γ ` x : T T <: U

Γ ` x : U

Γ ` x : T ⇒ U U <: V W <: T

Γ ` x : W ⇒ V

We also allow standard subtyping rules, with function results covariant and function
arguments contravariant.

a) [5 pts] Complete the following type rule templates (replace all ??? occurences)
so that they are consistent with the described meaning of the extensions and suf-
ficient to type check the extension if we exclude subtyping. You can abbreviate
Collection[T ] as C [T ]. Here is a example rule for flatMap:

Γ ` e : Collection[T ]

Γ ` flatMap(e) : (T ⇒ Collection[U ])⇒ Collection[U ]

???

Γ ` EmptyCol[α] :???

???

Γ ` add(e1, e2) :???

???

Γ ` permute(e) :???

???

Γ ` map(e) :???

solution

Γ ` EmptyCol[α] : Collection[α]

Γ ` e1 : Collection[T ] Γ ` e2 : T

Γ ` add(e1, e2) : Collection[T ]

Γ ` e1 : Collection[T ]

Γ ` permute(e) : T ⇒ T

Γ ` e : Collection[T ]

Γ ` map(e) : (T ⇒ U)⇒ Collection[U ]

b) [10 pts] Prove that the following program type checks by writing the type derivation
tree. You can write a separate tree for each right-hand side of variable definition.

val x = add(add(EmptyCol[Int], 1), 2)
val z = add(add(x, 3), 4)
val y = add(EmptyCol[Int⇒ Int], permute(z))
flatMap(y)(map(x))

3



solution

x typechecks to Collection[Int], z to Collection[Int] and y to Collection[Int⇒ Int] There-
fore map(x) typechecks to (Int⇒ Int)⇒ Collection[Int] and flatMap(y)(map(x)) type-
checks to Collection[Int]

Let us consider the following extended type system used to prevent at compilation time
the calling of permute on empty sets. We introduce for each regular collection type
Collection[T ] the empty-annotated types Collection+[T ] and Collection-[T ].

• Collection+[T ] meaning that the collection may be empty,

• Collection-[T ] meaning that the collection may not be empty.

It follows that Collection-[T ] <: Collection+[T ]. This is the only subtyping relation
available between collections here.

c) [10 pts] Give sound type rules for this language. Remember, that the types in your
rules have to be Collection-[T ] or Collection+[T ], Collection[T ] only appears in the
code.

solution

Γ ` EmptyCol[α] : Collection+[α]

Γ ` e1 : Collection+[T ] Γ ` e2 : T

Γ ` add(e1, e2) : Collection-[T ]

Γ ` e1 : Collection-[T ]

Γ ` permute(e) : T ⇒ T

Γ ` e : Collection-[T ]

Γ ` map(e) : (T ⇒ U)⇒ Collection-[U ]

Γ ` e : Collection+[T ]

Γ ` map(e) : (T ⇒ U)⇒ Collection+[U ]

Γ ` e : Collection+[T ]

Γ ` flatMap(e) : (T ⇒ Collection+[U ])⇒ Collection+[U ]

4



Problem 2: Code Generation for Switch (10 points)

In the following exercise we consider compilation to a stack machine that uses JVM
instructions.
Suppose that we extend our language with a special additional switch-case statement on
integers, with a way to reswitch on another integer if needed.

switch(i) { (case (nk | ) => (ek | reswitch (ek)))∗ }

switch executes the code ek corresponding to the expression nk when the result of nk is
equal to the result of i, and if nothing matches it executes the default statement introduced
by case .

reswitch(ek) is a jumping expression. It computes the value of ek which should be an
integer and re-runs the first outer switch on the resulting value. Its effectively creates a
loop.

An example of a switch statement using expressions written as a, b, c, e, f, g, h, i can be
the following:

switch(i) {

case a => e

case b => reswitch(f)

case c => g

case _ => h

}

a) [10 pts] Give the translation of the switch construct above to JVM instructions.

For this question, you can assume a number of 3 case statements, a reswitch on
the second, and one default statement as above. See the available jvm bytecode on
the next page. To avoid recomputing i, you might want to duplicate the value for
multiple comparisons. Use square brackets J K around the generic expressions like
i or a to compute them.

5



solution

JiK
top dup

JaK
if icmpne case2

pop
JeK
goto end

case2 dup
JbK
if icmpne case3

pop
JfK
goto top

case3 dup
JcK
if icmpne default

pop
JgK
goto end

default pop
JhK
goto end

end

6



These are selected bytecode instructions, mostly for integers, for your quick reference.

iload x Loads the integer value of the local variable in slot x on
the stack. x ∈ {0, 1, 2, 3}

iload X Loads the value of the local variable pointed to by index
X on the top of the stack.

iconst x Loads the integer constant x on the stack. x ∈
{0, 1, 2, 3, 4, 5}.

istore x Stores the current value on top of the stack in the local
variable in slot x. x ∈ {0, 1, 2, 3}

istore X Stores the current value on top of the stack in the local
variable indexed by X.

ireturn Method return statement (note that the return value has
to have been put on the top of the stack beforehand.

iadd Pop two (integer) values from the stack, add them and
put the result back on the stack.

isub Pop two (integer) values from the stack, subtract them
and put the result back on the stack.

imult Pop two (integer) values from the stack, multiply them
and put the result back on the stack.

idiv Pop two (integer) values from the stack, divide them
and put the result back on the stack.

irem Pop two (integer) values from the stack, put the result
of x1%x2 back on the stack.

ineg Negate the value on the stack.
iinc x, y Increment the variable in slot x by amount y.
ior Bitwise OR for the two integer values on the stack.
iand Bitwise AND for the two integer values on the stack.
ixor Bitwise XOR for the two integer values on the stack.
ifXX L Pop one value from the stack, compare it zero according

to the operator XX. If the condition is satisfied, jump
to the instruction given by label L. XX ∈ { eq, lt, le, ne,
gt, ge, null, nonnull }

if icmpXX L Pop two values from the stack and compare against each
other. Rest as above.

goto L Unconditional jump to instruction given by the label L.
pop Discard word currently on top of the stack.
dup Duplicate word currently on top of the stack.
swap Swaps the two top values on the stack.
aload x Loads an object reference from slot x.
aload X Loads an object reference from local variable indexed by

X.
iaload Loads onto the stack an integer from an array. The stack

must contain the array reference and the index.
iastore Stores an integer in an array. The stack must contain the

arrayreference, the index and the value, in that order.

7


