
Exercise 1

A ::= B EOF
B ::=  | B B | (B)

• Tokens: EOF, (, )

• Generate constraints and compute nullable
and first for this grammar. 

• Check whether first sets for different 
alternatives are disjoint.



Exercise 2

S ::= B EOF
B ::=  | (B) B 

• Tokens: EOF, (, )

• Generate constraints and compute nullable
and first for this grammar. 

• Check whether first sets for different 
alternatives are disjoint.



Exercise  Introducing Follow Sets
Compute nullable, first for this grammar:

stmtList ::=  | stmt stmtList

stmt ::= assign | block 

assign ::= ID =  ID  ; 

block ::= beginof ID stmtList ID ends

Describe a parser for this grammar and explain how it 
behaves on this input:

beginof myPrettyCode

x = u; 
y = v; 

myPrettyCode ends



How does a recursive descent parser 
look like?

def stmtList = 
if (???) {} what should the condition be?

else { stmat; stmtList }

def stmt =
if (lex.token == ID) assign
else if (lex.token == beginof) block
else error(“Syntax error: expected ID or beginonf”)

…

def block =
{ skip(beginof); skip(ID); stmtList; skip(ID); skip(ends) }



Problem Identified

stmtList ::=  | stmt stmtList

stmt ::= assign | block 

assign ::= ID  =  ID  ; 

block ::= beginof ID stmtList ID ends

Problem parsing stmtList: 

– ID could start alternative stmt stmtList

– ID could follow stmt, so we may wish to parse 
that is, do nothing and return

• For nullable non-terminals, we must also 
compute what follows them



General Idea when parsing nullable(A)

A ::=  B1 ... Bp

| C1 ... Cq

| D1 ... Dr

def A = 
if (token  T1) {

B1 ... Bp

else if (token  (T2  U  TF)) {
C1 ... Cq

} else if (token  T3) {
D1 ... Dr

} // no else error, just return
where:

T1 = first(B1 ... Bp)
T2 = first(C1 ... Cq)
T3 = first(D1 ... Dr)
TF = follow(A)

Only one of the alternatives can be nullable (here: 2nd) 
T1, T2, T3, TF should be pairwise disjoint sets of tokens.



LL(1) Grammar - good for building 
recursive descent parsers 

• Grammar is LL(1) if for each nonterminal X

– first sets of different alternatives of X are disjoint

– if nullable(X), first(X) must be disjoint from follow(X) 
and only one alternative of X may be nullable

• For each LL(1) grammar we can build 
recursive-descent parser

• Each LL(1) grammar is unambiguous

• If a grammar is not LL(1), we can sometimes 
transform it into equivalent LL(1) grammar



Computing if a token can follow

first(B1 ... Bp) = {a | B1...Bp ...  aw }

follow(X) = {a | S    ...  ...Xa... }

There exists a derivation from the start symbol 
that produces a sequence of terminals and 
nonterminals of the form  ...Xa...
(the token a follows the non-terminal X)



Rule for Computing Follow

Given X ::= YZ (for reachable X)

then first(Z)  follow(Y)
and follow(X)  follow(Z)

now take care of nullable ones as well:

For each rule X ::= Y1 ... Yp ... Yq ... Yr

follow(Yp) should contain:

• first(Yp+1Yp+2...Yr)

• also follow(X) if  nullable(Yp+1Yp+2Yr)



Compute nullable, first, follow

stmtList ::=  | stmt stmtList

stmt ::= assign | block 

assign ::= ID  =  ID  ; 

block ::= beginof ID stmtList ID ends

Is this grammar LL(1)?



Conclusion of the Solution

The grammar is not LL(1) because we have 

• nullable(stmtList)

• first(stmt)  follow(stmtList) = {ID} 

• If a recursive-descent parser sees ID, it does 
not know if it should 

– finish parsing stmtList or

– parse another stmt



Table for LL(1) Parser: Example

S ::= B EOF 
(1)

B ::=  | B (B)
(1) (2)

EOF ( )

S {1} {1} {}

B {1} {1,2} {1}

nullable: B

first(S) = { ( }
follow(S) = {}

first(B) = { ( }
follow(B) = { ), (, EOF }

Parsing table:

parse conflict - choice ambiguity:
grammar not LL(1)

empty entry:
when parsing S,
if we see ) ,
report error

1 is in entry because ( is in follow(B)
2 is in entry because ( is in first(B(B))



Table for LL(1) Parsing

Tells which alternative to take, given current token:

choice : Nonterminal x Token -> Set[Int]

A ::=  (1) B1 ... Bp

| (2) C1 ... Cq

| (3)  D1 ... Dr

For example, when parsing A and seeing token t

choice(A,t) = {2}  means: parse alternative 2   (C1 ... Cq )

choice(A,t) = {3}  means: parse alternative 3   (D1 ... Dr)

choice(A,t) = {}    means: report syntax error

choice(A,t) = {2,3} : not LL(1) grammar

if   t  first(C1 ... Cq)  add 2
to choice(A,t)

if   t  follow(A) add K to choice(A,t) 
where K is nullable alternative 



Transform Grammar for LL(1)

S ::= B EOF 
B ::=  | B (B)

(1) (2)

EOF ( )

S {1} {1} {}

B {1} {1,2} {1}

Transform the grammar 
so that parsing table has 
no conflicts.

Old parsing table:

conflict - choice ambiguity:
grammar not LL(1)

1 is in entry because ( is in follow(B)
2 is in entry because ( is in first(B(B))

EOF ( )

S

B

S ::= B EOF 
B ::=   | (B) B

(1) (2)

Left recursion is bad for LL(1)
choice(A,t) 



Parse Table is Code for Generic Parser
var stack : Stack[GrammarSymbol] // terminal or non-terminal
stack.push(EOF);
stack.push(StartNonterminal);
var lex = new Lexer(inputFile)
while (true) {

X = stack.pop
t = lex.curent
if (isTerminal(X))

if (t==X) if (X==EOF) return success
else lex.next // eat token t 

else parseError("Expected " + X)
else { // non-terminal

cs = choice(X)(t) // look up parsing table
cs match { // result is a set
case {i} => { // exactly one choice

rhs = p(X,i) // choose correct right-hand side
stack.pushRev(rhs) } // pushes symbols in rhs so leftmost becomes top of stack

case {} => parseError("Parser expected an element of " + unionOfAll(choice(X)))
case _ => crash(“parse table with conflicts - grammar was not LL(1)")

}
}



Exercise: check if this grammar is LL(1)

S::=  |A S

A ::= id := id
A ::= if id then A
A ::= if id then A' else A 

A' ::= id := id
A' ::= if id then A' else A‘

No, because first(if id then A) and
first(if id then A' else A) overlap.



What if we cannot transform the 
grammar into LL(1)?

1) Redesign your language

2) Use a more powerful parsing technique


