
Finite State Automata are Limited

Let us use (context-free) grammars!

Context Free Grammar for anbn

S ::=  - a grammar rule
S ::= a S b - another grammar rule

Example of a derivation

S => aSb => a aSb b => aa aSb bb => aaabbb

Parse tree: leaves give us the result

Context-Free Grammars

G = (A, N, S, R)

• A - terminals (alphabet for generated words w  A*)

• N - non-terminals – symbols with (recursive) definitions

• Grammar rules in R are pairs (n,v), written
n ::= v where

n  N is a non-terminal
v  (A U N)* - sequence of terminals and non-terminals

A derivation in G starts from the starting symbol S

• Each step replaces a non-terminal with one of its right
hand sides

Example from before: G = ({a,b}, {S}, S, {(S,), (S,aSb)})

Parse Tree
Given a grammar G = (A, N, S, R), t is a parse tree of G
iff t is a node-labelled tree with ordered children that satisfies:

• root is labeled by S

• leaves are labelled by elements of A

• each non-leaf node is labelled by an element of N

• for each non-leaf node labelled by n whose children left to right
are labelled by p1…pn, we have a rule (n::= p1…pn)  R

Yield of a parse tree t is the unique word in A* obtained by reading
the leaves of t from left to right

Language of a grammar G =
words of all yields of parse trees of G

L(G) = {yield(t) | isParseTree(G,t)}

isParseTree - easy to check condition

Harder: know if a word has a parse tree

Grammar Derivation

A derivation for G is any sequence of words pi (A U N)*,whose:

• first word is S

• each subsequent word is obtained from the previous one by
replacing one of its letters by right-hand side of a rule in R :
pi = unv , (n::=q)R,
pi+1 = uqv

• Last word has only letters from A

Each parse tree of a grammar has one or more derivations,
which result in expanding tree gradually from S

• Different orders of expanding non-terminals may generate
the same tree

Remark

We abbreviate

S ::= p

S ::= q

as

S ::= p | q

Example: Parse Tree vs Derivation
Consider this grammar G = ({a,b}, {S,P,Q}, S, R) where R is:

S ::= PQ
P ::= a | aP
Q ::=  | aQb

Show a derivation tree for aaaabb
Show at least two derivations that correspond to that tree.

Balanced Parentheses Grammar

Consider the language L consisting of precisely those
words consisting of parentheses “(“ and “)” that are
balanced (each parenthesis has the matching one)

• Example sequence of parentheses

((()) ()) - balanced, belongs to the language

()) (() - not balanced, does not belong

Exercise: give the grammar and example derivation for
the first string.

Balanced Parentheses Grammar

Proving that a Grammar Defines a Language

Grammar G: S ::=  | (S)S

defines language L(G)

Theorem: L(G) = Lb

where Lb = { w | for every pair u,v of words such

that uv=w, the number of (symbols in u
is greater or equal than the number of)

symbols in u . These numbers are equal in w }

L(G)  Lb : If w  L(G), then it has a parse tree. We show wLb by
induction on size of the parse tree deriving w using G.

If tree has one node, it is , and  Lb , so we are done.

Suppose property holds for trees up size n. Consider tree of size
n. The root of the tree is given by rule (S)S . The derivation of
sub-trees for the first and second S belong to Lb by induction
hypothesis. The derived word w is of the form (p)q where
p,q Lb. Let us check if (p)q Lb. Let (p)q = uv and count the
number of (and) in u. If u=  then it satisfies the property. If it is
shorter than |p|+1 then it has at least one more (than).
Otherwise it is of the form (p)q1 where q1 is a prefix of q.
Because the parentheses balance out in p and thus in (p), the
difference in the number of (and) is equal to the one in q1

which is a prefix of q so it satisfies the property. Thus u satisfies
the property as well.

Lb L(G): If w  Lb, we need to show that it has a parse tree. We do
so by induction on |w|. If w=  then it has a tree of size one (only
root). Otherwise, suppose all words of length <n have parse tree
using G. Let w Lb and |w|=n>0. (Please refer to the figure counting
the difference between the number of (and). We split w in the
following way: let p1 be the shortest non-empty prefix of w such that
the number of (equals to the number of). Such prefix always exists
and is non-empty, but could be equal to w itself. Note that it must
be that p1 = (p) for some p because p1 is a prefix of a word in Lb , so
the first symbol must be (and, because the final counts are equal,
the last symbol must be). Therefore, w = (p)q for some shorter
words p,q. Because we chose p to be the shortest, prefixes of (p
always have at least one more (. Therefore, prefixes of p always
have at greater or equal number of (, so p is in Lb. Next, for prefixes
of the form (p)v the difference between (and) equals this
difference in v itself, since (p) is balanced. Thus, v has at least as
many (as). We have thus shown that w is of the form (p)q where
p,q are in Lb. By IH p,q have parse trees, so there is parse tree for w.

Exercise: Grammar Equivalence

Show that each string that can be derived by
grammar G1

B ::=  | (B) | B B
can also be derived by grammar G2

B ::=  | (B) B

and vice versa. In other words, L(G1) = L(G2)

Remark: there is no algorithm to check for equivalence
of arbitrary grammars. We must be clever.

Grammar Equivalence
G1: B ::=  | (B) | B B

G2: B ::=  | (B) B

(Easy) Lemma: Each word in alphabet A={(,)} that can be derived by G2 can
also be derived by G1.

Proof. Consider a derivation of a word w from G2. We construct a derivation
of w in G1 by showing one or more steps that produce the same effect. We
have several cases depending on steps in G2 derivation:

uBv => uv replace by (same) uBv => uv

uBv => u(B)Bv replace by uBv => uBBv => u(B)Bv

This constructs a valid derivation in G1.

Corollary: L(G2)  L(G1)

Lemma: L(G1)  Lb (words derived by G1 are balanced parentheses).

Proof: very similar to proof of L(G2)  Lb from before.

Lemma: Lb  L(G2) – this was one direction of proof that Lb = L(G2) before.

Corollary: L(G2) = L(G1) = L(Lb)

Regular Languages and Grammars

Exercise: give grammar describing the same
language as this regular expression:

(a|b) (ab)*b*

Translating Regular Expression
into a Grammar

• Suppose we first allow regular expression
operators * and | within grammars

• Then R becomes simply

S ::= R

• Then give rules to remove *, | by introducing
new non-terminal symbols

Eliminating Additional Notation
• Alternatives

s ::= P | Q becomes s ::= P
s ::= Q

• Parenthesis notation
– introduce fresh non-terminal

expr (&& | < | == | + | - | * | / | %) expr

• Kleene star

{ statmt* }

• Option – use an alternative with epsilon

if (expr) statmt (else statmt)?

Grammars for Natural Language
Statement = Sentence "."
Sentence ::= Simple | Belief
Simple ::= Person liking Person
liking ::= "likes" | "does" "not" "like"
Person ::= "Barack" | "Helga" | "John" | "Snoopy"

Belief ::= Person believing "that" Sentence but

believing ::= "believes" | "does" "not" "believe"

but ::= "" | "," "but" Sentence

Exercise: draw the derivation tree for:

John does not believe that
Barack believes that Helga likes Snoopy,

but Snoopy believes that Helga likes Barack.

 can also be used to
automatically generate essays

While Language Syntax

This syntax is given by a context-free grammar:

program ::= statmt*

statmt ::= println(stringConst , ident)

| ident = expr

| if (expr) statmt (else statmt)?

| while (expr) statmt
| { statmt* }

expr ::= intLiteral | ident

| expr (&& | < | == | + | - | * | / | %) expr
| ! expr | - expr

Compiler
(scalac, gcc)

Id3 = 0
while (id3 < 10) {
println(“”,id3);
id3 = id3 + 1 }

source code
Compiler

i
d
3

=

0
LF

w

id3
=
0

while
(

id3
<

10
)

lexer

characters words
(tokens)

trees

parser

assign

while

i 0

+

*
3

7 i

assign
a[i]

<

i 10

Recursive Descent Parsing - Manually

- weak, but useful parsing technique
- to make it work, we might need to transform the grammar

Recursive Descent is Decent

descent = a movement downward

decent = adequate, good enough

Recursive descent is a decent parsing technique
– can be easily implemented manually based on the

grammar (which may require transformation)

– efficient (linear) in the size of the token sequence

Correspondence between grammar and code
– concatenation  ;

– alternative (|)  if

– repetition (*)  while

– nonterminal  recursive procedure

A Rule of While Language Syntax

// Where things work very nicely for recursive descent!

statmt ::=

println (stringConst , ident)

| ident = expr

| if (expr) statmt (else statmt)?

| while (expr) statmt
| { statmt* }

Parser for the statmt (rule -> code)
def skip(t : Token) = if (lexer.token == t) lexer.next

else error(“Expected”+ t)
// statmt ::=
def statmt = {

// println (stringConst , ident)
if (lexer.token == Println) { lexer.next;

skip(openParen); skip(stringConst); skip(comma);
skip(identifier); skip(closedParen)

// | ident = expr
} else if (lexer.token == Ident) { lexer.next;

skip(equality); expr
// | if (expr) statmt (else statmt)?

} else if (lexer.token == ifKeyword) { lexer.next;
skip(openParen); expr; skip(closedParen); statmt;
if (lexer.token == elseKeyword) { lexer.next; statmt }

// | while (expr) statmt

Continuing Parser for the Rule

// | while (expr) statmt

// | { statmt* }

} else if (lexer.token == whileKeyword) { lexer.next;

skip(openParen); expr; skip(closedParen); statmt

} else if (lexer.token == openBrace) { lexer.next;

while (isFirstOfStatmt) { statmt }

skip(closedBrace)

} else { error(“Unknown statement, found token ” +
lexer.token) }

How to construct if conditions?

statmt ::= println (stringConst , ident)

| ident = expr

| if (expr) statmt (else statmt)?

| while (expr) statmt
| { statmt* }

• Look what each alternative starts with to decide what to parse
• Here: we have terminals at the beginning of each alternative
• More generally, we have ‘first’computation, as for regular

expresssions
• Consider a grammar G and non-terminal N
LG(N) = { set of strings that N can derive }

e.g. L(statmt) – all statements of while language

first(N) = { a | aw in LG(N), a – terminal, w – string of terminals}
first(statmt) = { println, ident, if, while, { }
first(while (expr) statmt) = { while }

