
Finite State Automata are Limited

Let us use (context-free) grammars!



Context Free Grammar for anbn

S ::=  - a grammar rule
S ::= a S b - another grammar rule

Example of a derivation

S  =>  aSb =>  a aSb b  =>  aa aSb bb => aaabbb

Parse tree: leaves give us the result



Context-Free Grammars

G = (A, N, S, R)

• A - terminals (alphabet for generated words w  A*)

• N - non-terminals – symbols with (recursive) definitions

• Grammar rules in R are pairs (n,v), written
n ::= v where

n  N is a non-terminal
v  (A U N)* - sequence of terminals and non-terminals

A derivation in G starts from the starting symbol S

• Each step replaces a non-terminal with one of its right 
hand sides

Example from before:  G = ({a,b}, {S}, S, {(S,), (S,aSb)}) 



Parse Tree
Given a grammar G = (A, N, S, R), t is a parse tree of G 
iff t is a node-labelled tree with ordered children that satisfies:

• root is labeled by S 

• leaves are labelled by elements of A

• each non-leaf node is labelled by an element of N

• for each non-leaf node labelled by n whose children left to right 
are labelled by p1…pn, we have a rule (n::= p1…pn)  R

Yield of a parse tree t is the unique word in A* obtained by reading 
the leaves of t from left to right

Language of a grammar G =
words of all yields of parse trees of G

L(G) = {yield(t) | isParseTree(G,t)}

isParseTree - easy to check condition

Harder: know if a word has a parse tree



Grammar Derivation

A derivation for G is any sequence of words pi (A U N)*,whose:

• first word is S

• each subsequent word is obtained from the previous one by 
replacing one of its letters by right-hand side of a rule in R :
pi      = unv ,   (n::=q)R,    
pi+1 = uqv

• Last word has only letters from A

Each parse tree of a grammar has one or more derivations, 
which result in expanding tree gradually from S

• Different orders of expanding non-terminals may generate 
the same tree



Remark

We abbreviate

S ::= p

S ::= q

as

S ::= p | q



Example: Parse Tree vs Derivation
Consider this grammar G = ({a,b}, {S,P,Q}, S, R) where R is:

S ::= PQ
P ::= a | aP
Q ::=  | aQb

Show a derivation tree for  aaaabb
Show at least two derivations that correspond to that tree.



Balanced Parentheses Grammar

Consider the language L consisting of precisely those 
words consisting of parentheses “(“ and “)” that are 
balanced (each parenthesis has the matching one)

• Example sequence of parentheses

( ( () )  ()) - balanced, belongs to the language

( ) ) ( ( )  - not balanced, does not belong

Exercise: give the grammar and example derivation for 
the first string.



Balanced Parentheses Grammar



Proving that a Grammar Defines a Language

Grammar G: S ::=  | (S)S

defines language L(G)

Theorem: L(G) = Lb

where Lb = { w | for every pair u,v of words such

that uv=w, the number of ( symbols in u
is greater or equal than the number of )   

symbols in u . These numbers are equal in w }



L(G)  Lb : If w  L(G), then it has a parse tree. We show wLb by 
induction on size of the parse tree deriving w using G.

If tree has one node, it is , and  Lb , so we are done.

Suppose property holds for trees up size n. Consider tree of size 
n. The root of the tree is given by rule (S)S . The derivation of 
sub-trees for the first and second S belong to Lb by induction 
hypothesis. The derived word w is of the form  (p)q where 
p,q Lb. Let us check if (p)q Lb. Let (p)q = uv and count the 
number of ( and ) in u. If u=  then it satisfies the property. If it is 
shorter than |p|+1 then it has at least one more ( than ). 
Otherwise it is of the form (p)q1 where q1 is a prefix of q. 
Because the parentheses balance out in p and thus in (p), the 
difference in the number of ( and ) is equal to the one in q1

which is a prefix of q so it satisfies the property. Thus u satisfies 
the property as well.



Lb L(G): If w  Lb, we need to show that it has a parse tree. We do 
so by induction on |w|. If w=  then it has a tree of size one (only 
root). Otherwise, suppose all words of length <n have parse tree 
using G. Let w Lb and |w|=n>0. (Please refer to the figure counting 
the difference between the number of ( and ). We split w in the 
following way: let p1 be the shortest non-empty prefix of w such that 
the number of ( equals to the number of ). Such prefix always exists 
and is non-empty, but could be equal to w itself. Note that it must 
be that p1 = (p) for some p because p1 is a prefix of a word in Lb , so 
the first symbol must be ( and, because the final counts are equal, 
the last symbol must be ). Therefore, w = (p)q for some shorter 
words p,q. Because we chose p to be the shortest, prefixes of (p 
always have at least one more (. Therefore, prefixes of p always 
have at greater or equal number of (, so p is in Lb. Next, for prefixes 
of the form (p)v the difference between ( and ) equals this 
difference in v itself, since (p) is balanced. Thus, v has at least as 
many ( as ). We have thus shown that w is of the form (p)q where 
p,q are in Lb. By IH p,q have parse trees, so there is parse tree for w.



Exercise: Grammar Equivalence

Show that each string that can be derived by 
grammar G1

B ::=  | ( B ) | B B
can also be derived by grammar G2

B ::=  | ( B ) B

and vice versa. In other words, L(G1) = L(G2)

Remark: there is no algorithm to check for equivalence 
of arbitrary grammars. We must be clever.



Grammar Equivalence
G1:   B ::=  | ( B ) | B B

G2:   B ::=  | ( B ) B

(Easy) Lemma: Each word in alphabet A={(,)} that can be derived by G2 can 
also be derived by G1.

Proof. Consider a derivation of a word w from G2. We construct a derivation 
of w in G1 by showing one or more steps that produce the same effect. We 
have several cases depending on steps in G2 derivation:

uBv => uv replace by (same) uBv => uv

uBv => u(B)Bv replace by uBv => uBBv => u(B)Bv

This constructs a valid derivation in G1.

Corollary: L(G2)  L(G1)

Lemma: L(G1)  Lb (words derived by G1 are balanced parentheses).

Proof: very similar to proof of L(G2)  Lb from before.

Lemma: Lb  L(G2) – this was one direction of proof that Lb = L(G2) before.

Corollary: L(G2) = L(G1) = L(Lb)



Regular Languages and Grammars

Exercise: give grammar describing the same 
language as this regular expression:

(a|b) (ab)*b*



Translating Regular Expression 
into a Grammar

• Suppose we first allow regular expression 
operators * and | within grammars

• Then R becomes simply

S ::= R

• Then give rules to remove *, | by introducing 
new non-terminal symbols



Eliminating Additional Notation
• Alternatives

s ::= P | Q    becomes s ::= P
s ::= Q

• Parenthesis notation 
– introduce fresh non-terminal

expr (&& | < | == | + | - | * | / | % ) expr

• Kleene star

{ statmt* }

• Option – use an alternative with epsilon 

if ( expr ) statmt (else statmt)?



Grammars for Natural Language
Statement = Sentence "."
Sentence ::= Simple | Belief
Simple ::= Person liking Person 
liking ::= "likes" | "does" "not" "like" 
Person ::= "Barack" | "Helga" | "John" | "Snoopy" 

Belief ::= Person believing "that" Sentence but 

believing ::= "believes" | "does" "not" "believe" 

but ::= "" | "," "but" Sentence

Exercise: draw the derivation tree for:

John does not believe that 
Barack believes that Helga likes Snoopy, 

but Snoopy believes that Helga likes Barack.

 can also be used to 
automatically generate essays



While Language Syntax

This syntax is given by a context-free grammar:

program ::= statmt* 

statmt ::= println( stringConst , ident )

| ident = expr

| if ( expr ) statmt (else statmt)?

| while ( expr ) statmt
| { statmt* } 

expr ::= intLiteral | ident

| expr (&& | < | == | + | - | * | / | % ) expr
| ! expr | - expr



Compiler        
(scalac, gcc)                  

Id3 = 0
while (id3 < 10) {
println(“”,id3);
id3 = id3 + 1 }
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Recursive Descent Parsing - Manually

- weak, but useful parsing technique
- to make it work, we might need to transform the grammar



Recursive Descent is Decent

descent = a movement downward

decent = adequate, good enough

Recursive descent is a decent parsing technique
– can be easily implemented manually based on the 

grammar (which may require transformation)

– efficient (linear) in the size of the token sequence

Correspondence between grammar and code
– concatenation  ; 

– alternative (|)  if

– repetition (*)  while

– nonterminal  recursive procedure



A Rule of While Language Syntax

// Where things work very nicely for recursive descent!

statmt ::= 

println ( stringConst , ident )

| ident = expr

| if ( expr ) statmt (else statmt)?

| while ( expr ) statmt
| { statmt* } 



Parser for the statmt (rule -> code)
def skip(t : Token) = if (lexer.token == t) lexer.next

else error(“Expected”+ t)
// statmt ::= 
def statmt = {

// println ( stringConst , ident )
if (lexer.token == Println) { lexer.next;

skip(openParen); skip(stringConst); skip(comma);
skip(identifier); skip(closedParen)

// | ident = expr
} else if (lexer.token == Ident) { lexer.next;

skip(equality); expr
// | if ( expr ) statmt (else statmt)?

} else if (lexer.token == ifKeyword) { lexer.next;
skip(openParen); expr; skip(closedParen); statmt;
if (lexer.token == elseKeyword) { lexer.next; statmt }

// | while ( expr ) statmt



Continuing Parser for the Rule

// | while ( expr ) statmt

// | { statmt* } 

} else if (lexer.token == whileKeyword) { lexer.next;

skip(openParen); expr; skip(closedParen); statmt

} else if (lexer.token == openBrace) { lexer.next;

while (isFirstOfStatmt) { statmt }

skip(closedBrace)

} else { error(“Unknown statement, found token ” + 
lexer.token)  }



How to construct if conditions?

statmt ::= println ( stringConst , ident )

| ident = expr

| if ( expr ) statmt (else statmt)?

| while ( expr ) statmt
| { statmt* } 

• Look what each alternative starts with to decide what to parse
• Here: we have terminals at the beginning of each alternative
• More generally, we have ‘first’computation, as for regular 

expresssions
• Consider a grammar G and non-terminal N
LG(N) = { set of strings that N can derive }

e.g. L(statmt) – all statements of while language

first(N) = { a | aw in LG(N), a – terminal,  w – string of terminals}
first(statmt) = { println, ident, if, while, { }
first(while ( expr ) statmt) = { while }


