Finite State Automata are Limited

Let us use (context-free) grammars!

Context Free Grammar for a"b"

S:=¢ - a grammar rule
S:=aShb - another grammar rule

Example of a derivation
S => aSb => aaSb b => aa aSb bb => aaabbb

Parse tree: S leaves give us the result
a/ b ,aabbb
1T
1 b

'S

Context-Free Grammars
> « ol sebs are fiuke A\N,R
G=(AN,S,R)

e A -terminals (alphabet for generated words w € A*)

e N - non-terminals — symbols with (recursive) definitions

e Grammar rules in R are pairs (n,v), written
n=v where
n € N is a non-terminal
v € (A U N)* -sequence of terminals and non-terminals

A derivation in G starts from the starting symbol S€ N

e Each step replaces a non-terminal with one of its right
hand sides

Example from before: G = ({a,b}, {S}, S, {(S,¢), (S,aSb)})

Parse Tree

Given a grammar G =(A, N, S, R), tis a parse tree of G
iff tis a node-labelled tree with ordered children that satisfies:

e root is labeled by S
e leaves are labelled by elements of AU €}
e each non-leaf node is labelled by an element of N

e for each non-leaf node labelled by n whose children left to right
are labelled by p,...p,, we have a rule (n::= p,...p,) € R

Yield of a parse tree t is the unique word in A* obtained by reading
the leaves of t from left to right S
/0N
Language of a grammar G = A b
words of all yields of parse trees of G

L(G) = {yield(t) | isParseTree(G,t)}
isParseTree - easy to check condition

aaa bbb

Harder: know if a word has a parse tree

Grammar Derivation

A derivation for G is any sequence of words p, €(A U N)*,whose:

e firstwordisS

e each subsequent word is obtained from the previous one by
replacing one of its letters by right-hand side of arule in R :
p. =unv, (n:=q)eR,
pi+1 = uqgv

e Last word has only letters from A

Each parse tree of a grammar has one or more derivations,
which result in expanding tree gradually from S

e Different orders of expanding non-terminals may generate
the same tree

We abbreviate
S:=p
S:=q

as
Su=p|qg

Remark

Example: Parse Tree vs Derivation
Consider this grammar G = ({a,b}, {S,P,Q}, S, R) where R is:

S ::=PQ
P:=a]aP {QMQ"LM (w1, \/\20‘()
Q:=¢|aQb

Show a derivation tree for adaabb
Show at least two derivations that correspond to that tree.

SaP@=gPR = ax Q> aa a@bScaaal@bp gqaabb

Py s=»>78 = Palb
/P\? CID_E = ? oo Q ‘a))
RN > af as &bY
A Q/& & > ol oo L
|

s = oa cnc)\"\p

Balanced Parentheses Grammar

Consider the language L consisting of precisely those
words consisting of parentheses “(“ and “)” that are
balanced (each parenthesis has the matching one)

e Example sequence of parentheses

((()) ()) -balanced, belongs to the language

())(() - not balanced, does not belong

Exercise: give the grammar and example derivation for
the first string.

Balanced Parentheses Grammar
B = BB \ (B) \ &

—

c.= c ()c | =

D= (DD | ¢

Proving that a Grammar Defines a Language

Grammar G: S:=¢g| (S)S
defines language L(G)
Theorem: L(G) = L,

where L, = { w | for every pair u,v of words such

that uv=w, the number of (symbols in u
is greater or equal than the number of)

symbols in u. These numbers are equal in w }

e (— % /\
N\ \
3

Y]

L(G) = L, : If w € L(G), then it has a parse tree. We show wel, by
induction on size of the parse tree deriving w using G.

If tree has one node, itis €, and € €L, so we are done.

Suppose property holds for trees up size n. Consider tree of size
n. The root of the tree is given by rule (S)S . The derivation of
sub-trees for the first and second S belong to L, by induction
hypothesis. The derived word w is of the form (p)q where

p,qe L,. Let us check if (p)gq €L,. Let (p)g = uv and count the
number of (and) in u. If u= € then it satisfies the property. If it is
shorter than |p|+1 then it has at least one more (than).
Otherwise it is of the form (p)q, where q, is a prefix of q.
Because the parentheses balance out in p and thus in (p), the
difference in the number of (and) is equal to the one in q,
which is a prefix of g so it satisfies the property. Thus u satisfies
the property as well.

L, L(G): If w € L,, we need to show that it has a parse tree. We do
so by induction on |w|. If w= ¢ then it has a tree of size one (only
root). Otherwise, suppose all words of length <n have parse tree
using G. Let w €L, and |w|=n>0. (Please refer to the figure counting
the difference between the number of (and). We split w in the
following way: let p, be the shortest non-empty prefix of w such that
the number of (equals to the number of). Such prefix always exists
and is non-empty, but could be equal to w itself. Note that it must
be that p, = (p) for some p because p, is a prefix of a word in L, , so
the first symbol must be (and, because the final counts are equal,
the last symbol must be). Therefore, w = (p)q for some shorter
words p,q. Because we chose p to be the shortest, prefixes of (p
always have at least one more (. Therefore, prefixes of p always
have at greater or equal number of (, so p is in L,. Next, for prefixes
of the form (p)v the difference between (and) equals this
difference in v itself, since (p) is balanced. Thus, v has at least as
many (as). We have thus shown that w is of the form (p)g where
p,q arein L,. By IH p,q have parse trees, so there is parse tree for w.

Exercise: Grammar Equivalence

Show that each string that can be derived by
grammar G,

B::=¢|(B)|BB
can also be derived by grammar G,

B::=¢|(B)B
and vice versa. In other words, L(G,) = L(G,)

Remark: there is no algorithm to check for equivalence
of arbitrary grammars. We must be clever.

Grammar Equivalence

G;: Bi=¢|(B)|BB
G, Bi=¢|(B)B

(Easy) Lemma: Each word in alphabet A={(,)} that can be derived by G, can
also be derived by G;.

Proof. Consider a derivation of a word w from G,. We construct a derivation
of win G; by showing one or more steps that produce the same effect. We
have several cases depending on steps in G, derivation:

uBv => uv replace by (same) uBv => uv

uBv => u(B)Bv replace by uBv => uBBv => u(B)Bv

This constructs a valid derivation in Gj.

Corollary: L(G,) < L(G,)

Lemma: L(G,) < L, (words derived by G, are balanced parentheses).
Proof: very similar to proof of L(G,) < L, from before.

Lemma: L, < L(G,) — this was one direction of proof that L, = L(G,) before.
Corollary: L(G,) = L(G,) = L(L,)

Regular Languages and Grammars

Exercise: give grammar describing the same
language as this regular expression:

(a|b) (ab)*\b*

s:= P AR

Pu= R = bR
e Ru= &
A = b

6-=¢

Translating Regular Expression

Into a Grammar
e Suppose we first allow regular expression
operators * and | within grammars
e Then R becomes simply
S::=R
e Then give rules to remove *, | by introducing
new non-terminal symbols

=8
= :R \Rz | > N !
N = Ry N mts

< RY e N = €
" Nz RN

A

Eliminating Additional Notation

Alternatives

s::=P | Q becomes

p
Q

S .
S -

Parenthesis notation
— introduce fresh non-terminal

expr(&& | <|==[+|-[*]/]%)expr
Kleene star

{ statmt™ }
Option — use an alternative with epsilon

if (expr) statmt (else statmt)’

Grammars for Natural Language

Statement = Sentence ". > can also be used to
Sentence ::= Simple | Belief automatically generate essays
Simple ::= Person liking Person

liking ::="likes" | "does" "not" "like"

Person ::= "Barack" | "Helga" | "John" | "Snoopy"

Belief ::= Person believing "that" Sentence but

believing ::= "believes" | "does" "not" "believe"

put :=""1]"," "but" Sentence

Exercise: draw the derivation tree for:

John does not believe that
Barack believes that Helga likes Snoopy,
but Snoopy believes that Helga likes Barack.

While Language Syntax

This syntax is given by a context-free grammar:
program ::= statmt*

statmt ::= printIn(stringConst , ident)

ident = expr

if (expr) statmt (else statmt)’

while (expr) statmt

{ statmt™ }
expr ::=intLiteral | ident
| expr(&& [<[==[+[-[*[/]%)expr

| 1 expr | - expr

1d3 =0 Compiler
while (id3 < 10) { source code

printIn(“”,id3);

id3=id3+1 }

characters words trees

Recursive Descent Parsing - Manually

- weak, but useful parsing technique
- to make it work, we might need to transform the grammar

Recursive Descent is Decent

descent = a movement downward
decent = adequate, good enough
Recursive descent is a decent parsing technique

— can be easily implemented manually based on the
grammar (which may require transformation)

— efficient (linear) in the size of the token sequence
Correspondence between grammar and code

— concatenation 2
— alternative (|) - if
— repetition (*) - while

— nonterminal - recursive procedure

A Rule of While Language Syntax

// Where things work very nicely for recursive descent!

statmt ::=

printin (stringConst, ident)
ident = expr

if (expr) statmt (else statmt)’

while (expr) statmt
{ statmt™ }

Parser for the statmt (-> code)

def skip(t : Token) = if (lexer.token == t) lexer.next
else error(“Expected”+ t)

// statmt ::=

def statmt = {

// printin (stringConst, ident)

if (lexer.token == Println) { lexer.next;
skip(openParen); skip(stringConst); skip(comma);
skip(identifier); skip(closedParen)

// | ident = expr

} else if (lexer.token == Ident) { lexer.next;
skip(equality); expr

// | if (expr) statmt (else statmt)’

} else if (lexer.token == ifKeyword) { lexer.next;
skip(openParen); expr; skip(closedParen); statmt;
if (lexer.token == elseKeyword) { lexer.next; statmt }

// | while (expr) statmt

Continuing Parser for the Rule

// | while (expr) statmt

} else if (lexer.token == whileKeyword) { lexer.next;
skip(openParen); expr; skip(closedParen); statmt

// | { statmt* }

} else if (lexer.token == openBrace) { lexer.next;
while (isFirstOfStatmt) { statmt }
skip(closedBrace)

} else { error(“Unknown statement, found token ” +
lexer.token) }

How to construct if conditions?

statmt ::= printIn (stringConst , ident)
ident = expr
if (expr) statmt (else statmt)’

while (expr) statmt
{ statmt™* }

e Look what each alternative starts with to decide what to parse

e Here: we have terminals at the beginning of each alternative

e More generally, we have ‘first‘computation, as for regular
expresssions

e Consider a grammar G and non-terminal N

L;(N) = { set of strings that N can derive }
e.g. L(statmt) — all statements of while language

first(N) ={a | aw in Lg(N), a —terminal, w — string of terminals}
first(statmt) = { printin, ident, if, while, { }
first(while (expr) statmt) = { while }

