
Finite State Automata are Limited

Let us use (context-free) grammars!



Context Free Grammar for anbn

S ::=  - a grammar rule
S ::= a S b - another grammar rule

Example of a derivation

S  =>  aSb =>  a aSb b  =>  aa aSb bb => aaabbb

Parse tree: leaves give us the result



Context-Free Grammars

G = (A, N, S, R)

• A - terminals (alphabet for generated words w  A*)

• N - non-terminals – symbols with (recursive) definitions

• Grammar rules in R are pairs (n,v), written
n ::= v where

n  N is a non-terminal
v  (A U N)* - sequence of terminals and non-terminals

A derivation in G starts from the starting symbol S

• Each step replaces a non-terminal with one of its right 
hand sides

Example from before:  G = ({a,b}, {S}, S, {(S,), (S,aSb)}) 



Parse Tree
Given a grammar G = (A, N, S, R), t is a parse tree of G 
iff t is a node-labelled tree with ordered children that satisfies:

• root is labeled by S 

• leaves are labelled by elements of A

• each non-leaf node is labelled by an element of N

• for each non-leaf node labelled by n whose children left to right 
are labelled by p1…pn, we have a rule (n::= p1…pn)  R

Yield of a parse tree t is the unique word in A* obtained by reading 
the leaves of t from left to right

Language of a grammar G =
words of all yields of parse trees of G

L(G) = {yield(t) | isParseTree(G,t)}

isParseTree - easy to check condition

Harder: know if a word has a parse tree



Grammar Derivation

A derivation for G is any sequence of words pi (A U N)*,whose:

• first word is S

• each subsequent word is obtained from the previous one by 
replacing one of its letters by right-hand side of a rule in R :
pi      = unv ,   (n::=q)R,    
pi+1 = uqv

• Last word has only letters from A

Each parse tree of a grammar has one or more derivations, 
which result in expanding tree gradually from S

• Different orders of expanding non-terminals may generate 
the same tree



Remark

We abbreviate

S ::= p

S ::= q

as

S ::= p | q



Example: Parse Tree vs Derivation
Consider this grammar G = ({a,b}, {S,P,Q}, S, R) where R is:

S ::= PQ
P ::= a | aP
Q ::=  | aQb

Show a derivation tree for  aaaabb
Show at least two derivations that correspond to that tree.



Balanced Parentheses Grammar

Consider the language L consisting of precisely those 
words consisting of parentheses “(“ and “)” that are 
balanced (each parenthesis has the matching one)

• Example sequence of parentheses

( ( () )  ()) - balanced, belongs to the language

( ) ) ( ( )  - not balanced, does not belong

Exercise: give the grammar and example derivation for 
the first string.



Balanced Parentheses Grammar



Proving that a Grammar Defines a Language

Grammar G: S ::=  | (S)S

defines language L(G)

Theorem: L(G) = Lb

where Lb = { w | for every pair u,v of words such

that uv=w, the number of ( symbols in u
is greater or equal than the number of )   

symbols in u . These numbers are equal in w }



L(G)  Lb : If w  L(G), then it has a parse tree. We show wLb by 
induction on size of the parse tree deriving w using G.

If tree has one node, it is , and  Lb , so we are done.

Suppose property holds for trees up size n. Consider tree of size 
n. The root of the tree is given by rule (S)S . The derivation of 
sub-trees for the first and second S belong to Lb by induction 
hypothesis. The derived word w is of the form  (p)q where 
p,q Lb. Let us check if (p)q Lb. Let (p)q = uv and count the 
number of ( and ) in u. If u=  then it satisfies the property. If it is 
shorter than |p|+1 then it has at least one more ( than ). 
Otherwise it is of the form (p)q1 where q1 is a prefix of q. 
Because the parentheses balance out in p and thus in (p), the 
difference in the number of ( and ) is equal to the one in q1

which is a prefix of q so it satisfies the property. Thus u satisfies 
the property as well.



Lb L(G): If w  Lb, we need to show that it has a parse tree. We do 
so by induction on |w|. If w=  then it has a tree of size one (only 
root). Otherwise, suppose all words of length <n have parse tree 
using G. Let w Lb and |w|=n>0. (Please refer to the figure counting 
the difference between the number of ( and ). We split w in the 
following way: let p1 be the shortest non-empty prefix of w such that 
the number of ( equals to the number of ). Such prefix always exists 
and is non-empty, but could be equal to w itself. Note that it must 
be that p1 = (p) for some p because p1 is a prefix of a word in Lb , so 
the first symbol must be ( and, because the final counts are equal, 
the last symbol must be ). Therefore, w = (p)q for some shorter 
words p,q. Because we chose p to be the shortest, prefixes of (p 
always have at least one more (. Therefore, prefixes of p always 
have at greater or equal number of (, so p is in Lb. Next, for prefixes 
of the form (p)v the difference between ( and ) equals this 
difference in v itself, since (p) is balanced. Thus, v has at least as 
many ( as ). We have thus shown that w is of the form (p)q where 
p,q are in Lb. By IH p,q have parse trees, so there is parse tree for w.



Exercise: Grammar Equivalence

Show that each string that can be derived by 
grammar G1

B ::=  | ( B ) | B B
can also be derived by grammar G2

B ::=  | ( B ) B

and vice versa. In other words, L(G1) = L(G2)

Remark: there is no algorithm to check for equivalence 
of arbitrary grammars. We must be clever.



Grammar Equivalence
G1:   B ::=  | ( B ) | B B

G2:   B ::=  | ( B ) B

(Easy) Lemma: Each word in alphabet A={(,)} that can be derived by G2 can 
also be derived by G1.

Proof. Consider a derivation of a word w from G2. We construct a derivation 
of w in G1 by showing one or more steps that produce the same effect. We 
have several cases depending on steps in G2 derivation:

uBv => uv replace by (same) uBv => uv

uBv => u(B)Bv replace by uBv => uBBv => u(B)Bv

This constructs a valid derivation in G1.

Corollary: L(G2)  L(G1)

Lemma: L(G1)  Lb (words derived by G1 are balanced parentheses).

Proof: very similar to proof of L(G2)  Lb from before.

Lemma: Lb  L(G2) – this was one direction of proof that Lb = L(G2) before.

Corollary: L(G2) = L(G1) = L(Lb)



Regular Languages and Grammars

Exercise: give grammar describing the same 
language as this regular expression:

(a|b) (ab)*b*



Translating Regular Expression 
into a Grammar

• Suppose we first allow regular expression 
operators * and | within grammars

• Then R becomes simply

S ::= R

• Then give rules to remove *, | by introducing 
new non-terminal symbols



Eliminating Additional Notation
• Alternatives

s ::= P | Q    becomes s ::= P
s ::= Q

• Parenthesis notation 
– introduce fresh non-terminal

expr (&& | < | == | + | - | * | / | % ) expr

• Kleene star

{ statmt* }

• Option – use an alternative with epsilon 

if ( expr ) statmt (else statmt)?



Grammars for Natural Language
Statement = Sentence "."
Sentence ::= Simple | Belief
Simple ::= Person liking Person 
liking ::= "likes" | "does" "not" "like" 
Person ::= "Barack" | "Helga" | "John" | "Snoopy" 

Belief ::= Person believing "that" Sentence but 

believing ::= "believes" | "does" "not" "believe" 

but ::= "" | "," "but" Sentence

Exercise: draw the derivation tree for:

John does not believe that 
Barack believes that Helga likes Snoopy, 

but Snoopy believes that Helga likes Barack.

 can also be used to 
automatically generate essays



While Language Syntax

This syntax is given by a context-free grammar:

program ::= statmt* 

statmt ::= println( stringConst , ident )

| ident = expr

| if ( expr ) statmt (else statmt)?

| while ( expr ) statmt
| { statmt* } 

expr ::= intLiteral | ident

| expr (&& | < | == | + | - | * | / | % ) expr
| ! expr | - expr



Compiler        
(scalac, gcc)                  

Id3 = 0
while (id3 < 10) {
println(“”,id3);
id3 = id3 + 1 }
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Recursive Descent Parsing - Manually

- weak, but useful parsing technique
- to make it work, we might need to transform the grammar



Recursive Descent is Decent

descent = a movement downward

decent = adequate, good enough

Recursive descent is a decent parsing technique
– can be easily implemented manually based on the 

grammar (which may require transformation)

– efficient (linear) in the size of the token sequence

Correspondence between grammar and code
– concatenation  ; 

– alternative (|)  if

– repetition (*)  while

– nonterminal  recursive procedure



A Rule of While Language Syntax

// Where things work very nicely for recursive descent!

statmt ::= 

println ( stringConst , ident )

| ident = expr

| if ( expr ) statmt (else statmt)?

| while ( expr ) statmt
| { statmt* } 



Parser for the statmt (rule -> code)
def skip(t : Token) = if (lexer.token == t) lexer.next

else error(“Expected”+ t)
// statmt ::= 
def statmt = {

// println ( stringConst , ident )
if (lexer.token == Println) { lexer.next;

skip(openParen); skip(stringConst); skip(comma);
skip(identifier); skip(closedParen)

// | ident = expr
} else if (lexer.token == Ident) { lexer.next;

skip(equality); expr
// | if ( expr ) statmt (else statmt)?

} else if (lexer.token == ifKeyword) { lexer.next;
skip(openParen); expr; skip(closedParen); statmt;
if (lexer.token == elseKeyword) { lexer.next; statmt }

// | while ( expr ) statmt



Continuing Parser for the Rule

// | while ( expr ) statmt

// | { statmt* } 

} else if (lexer.token == whileKeyword) { lexer.next;

skip(openParen); expr; skip(closedParen); statmt

} else if (lexer.token == openBrace) { lexer.next;

while (isFirstOfStatmt) { statmt }

skip(closedBrace)

} else { error(“Unknown statement, found token ” + 
lexer.token)  }



How to construct if conditions?

statmt ::= println ( stringConst , ident )

| ident = expr

| if ( expr ) statmt (else statmt)?

| while ( expr ) statmt
| { statmt* } 

• Look what each alternative starts with to decide what to parse
• Here: we have terminals at the beginning of each alternative
• More generally, we have ‘first’computation, as for regular 

expresssions
• Consider a grammar G and non-terminal N
LG(N) = { set of strings that N can derive }

e.g. L(statmt) – all statements of while language

first(N) = { a | aw in LG(N), a – terminal,  w – string of terminals}
first(statmt) = { println, ident, if, while, { }
first(while ( expr ) statmt) = { while }


