
Exercise 1

Consider a language with the following tokens and token classes:

ID ::= letter (letter|digit)*
LT ::= "<"
GT ::= ">"
shiftL ::= "<<"
shiftR ::= ">>"
dot ::= "."
LP ::= "("
RP ::= ")"

Give a sequence of tokens for the following character sequence,
applying the longest match rule:

(List<List<Int>>)(myL).headhead

Note that the input sequence contains no space character

Exercise 2

Find a regular expression that generates all alternating
sequences of 0 and 1 with arbitrary length (including
lengths zero, one, two, ...). For example, the
alternating sequences of length one are 0 and 1, length
two are 01 and 10, length three are 010 and 101. Note
that no two adjacent character can be the same in an
alternating sequence.

Exercise 3
a) Describe any algorithm using a single unbounded
integer counter that determines if a string consists of
well-nested parentheses

b) Construct a DFA (deterministic finite-state
automaton) for the language L of well-nested
parenthesis of nesting depth at most 3. For example,
ε, ()(), (()(())) and (()())()() should be in L,
but not (((()))) nor (()(()(()))), nor ())) .

Exercise 4
• Find two equivalent states in the automaton, and merge them to produce a

smaller automaton that recognizes the same language. Repeat until there
are no longer equivalent states.

• Recall that the general algorithm for minimizing finite automata works in
reverse. First, find all pairs of inequivalent states. States X, Y are inequivalent
if X is final and Y is not, or (by iteration) if and and X’ and Y’ are
inequivalent. After this iteration ceases to find new pairs of inequivalent
states, then X, Y are equivalent, if they are not inequivalent.

Exercise 5
Let tail be a function that returns all the symbols of a string except
the last one. For example

tail(mama)=mam
tail is undefined for an empty string. If L1 A*, then TAIL(L1)
applies the function to all non-empty words in L1, ignoring if it is
in L1: TAIL(L1) = { v A* | a A. va L1}

TAIL({aba,aaaa,bb, }) = {ab,aaa,b}
L(r) denotes the language of a regular expression r. Then
TAIL(L(abba|ba*|ab*)) = L(ba*|ab*|)

Tasks:

• Prove that if language L1 is regular, then so is TAIL(L1)

• Give an algorithm that, given a regular expression r for L1,
computes a regular expression rtail(r) for language TAIL(L1)

Exercise 5 - solution
• You can first construct a regular expression or an automaton

(whichever is convenient for you), and then convert one
representation to the other using the standard algorithms.

• Alternatively, it is possible to define both regular expression
and automata for tail(L) directly from the regular
expression/automata of L

Approach I

a) First construct an automaton for tail(L)

If DFA for L is (Σ, 𝑄, 𝑞0, 𝛿, 𝐹) then

DFA for tail(L) is (Σ, 𝑄, 𝑞0, 𝛿, 𝐹′)

where
𝐹′ = 𝑞 ∃𝑐 ∈ Σ. 𝛿 𝑞, 𝑐 ∈ 𝐹 }

b) Convert the automaton for tail(L) to a regular expression

Exercise 5 - solution
• Approach II

– First construct a regular expression for tail(L) using the following
construction

– Convert the regular expression to an automata

Exercise 6. Given NFA A, find first(L(A))

• Compute the set of first symbols of words accepted
by the following non-deterministic finite state
machine with epsilon transitions:

• Describe an algorithm that solves this problem given
a given NFA

More Questions

• Find automaton or regular expression for:

– Any sequence of open and closed parentheses of
even length?

– as many digits before as after decimal point?

– Sequence of balanced parentheses
((()) ()) - balanced
()) (() - not balanced

– Comment as a sequence of space,LF,TAB, and
comments from // until LF

– Nested comments like /* ... /* */ … */

Automaton that Claims to Recognize
{ anbn | n >= 0 }

Make the automaton deterministic

Let the resulting DFA have K states, |Q|=K

Feed it a, aa, aaa, …. Let qi be state after reading ai

q0 , q1 , q2 , ... , qK

This sequence has length K+1 -> a state must repeat
qi = qi+p p > 0

Then the automaton should accept ai+pbi+p .

But then it must also accept

ai bi+p

because it is in state after reading ai as after ai+p.

So it does not accept the given language.

Limitations of Regular Languages

• Every automaton can be made deterministic

• Automaton has finite memory, cannot count

• Deterministic automaton from a given state
behaves always the same

• If a string is too long, deterministic automaton
will repeat its behavior

Pumping Lemma

If L is a regular language, then there exists a
positive integer p (the pumping length) such
that every string s L for which |s| ≥ p, can be
partitioned into three pieces, s = x y z, such that

• |y| > 0

• |xy| ≤ p

• ∀i ≥ 0. xyiz L

Let’s try again: { anbn | n >= 0 }

Automata are Limited

Let us use grammars!

