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Code Compiled with javacstatic int k = 0;

static boolean action(int si,
boolean ob, 
int sm, int pr) {

if (sm + 2*pr > 10 && 

!(si <= 5 && ob)) {

k++; return true;

} else {

return false;

} }

Compared to our current translation:

if 'sm+2*pr > 10' false, immediately ireturns

if 'si > 5' is true, immediately goes to 'then' part

no intermediate result for if condition - do 
branches directly

negation sign eliminated and pushed through

only one iconst_0 and one iconst_1

0:   iload_2

1:   iconst_2

2:   iload_3

3:   imul

4:   iadd

5:   bipush 10

7:  if_icmple       29

10:  iload_0

11:  iconst_5

12:  if_icmpgt 19

15:  iload_1

16: ifne    29

19:  getstatic #2; //Field k

22:  iconst_1

23:  iadd

24: putstatic       #2; //Field k

27:  iconst_1

28:  ireturn

29:  iconst_0

30:  ireturn



Translate This While Loop 
using Rules that Explicitly Put Booleans on Stack

static void count(int from, 
int to, 
int step) {

int counter = from;

while (counter < to) {

counter = counter + step;

}

}

nbegin: iload #counter

iload #to

if_icmplt ntrue

iconst_0

goto nafter

ntrue: iconst_1

nafter: ifeq nexit

iload #counter

iload #step

iadd

istore #counter

goto nbegin

nexit:



Towards More Efficient Translation



Macro ‘branch’ instruction

Introduce an imaginary big instruction

branch(c,nTrue,nFalse)

Here

c is a potentially complex Java boolean expression,
that is the main reason why branch is not a real instruction

nTrue is label to jump to when c evaluates to true

nFalse is label to jump to when c evaluates to false

no “fall through” – always jumps (symmetrical)

We show how to:

• use branch to compile if, while, etc.

• expand branch recursively into concrete bytecodes



Using branch in Compilation

[ if (c) t else e ] = [ while (c) s ] =

nTrue: [ t ]

goto nAfter

nFalse:  [ e ]

nAfter:

branch(c,nTrue,nFalse)
test: branch(c,body,exit)

body: [ s ]

goto test

exit:



Decomposing branch

branch(!c,nThen,nElse) =

branch(c1 && c2,nThen,nElse) =

branch(c1 || c2,nThen,nElse) =

branch(true,nThen,nElse) =

branch(false,nThen,nElse) =

boolean var b with slot N

branch(b,nThen,nElse) =

branch(c,nElse,nThen)

branch(c1,nNext,nElse)

nNext:branch(c2,nThen,nElse)

branch(c1,nThen,nNext)

nNext:branch(c2,nThen,nElse)

goto nThen

goto nElse

iload_N

ifeq nElse

goto nThen



Compiling Relations

branch(e1 R e2,nThen,nElse) =

[ e1 ]

[ e2 ]

if_icmpR nThen

goto nElse

R can be <,>,==,!=,<=,>=,...



Putting boolean variable on the stack

Consider storing x = c

where x,c are boolean and c  has &&, ||

How to put result of branch on stack to allow istore?

[ b = c ] = branch(c,nThen,nElse)

nThen: iconst_1

goto nAfter

nElse:   iconst_0

nAfter: istore #b



Compare Two Translations 
of This While Loop

while (counter < to) {

counter = counter + step;

}

nbegin: iload #counter

iload #to

if_icmplt ntrue

iconst_0

goto nafter

ntrue: iconst_1

nafter: ifeq nexit

iload #counter

iload #step

iadd

istore #counter

goto nbegin

nexit:

old one:
test: iload #counter

iload #to

if_icmplt body

goto exit

body: iload #counter

iload #step

iadd

istore #counter

goto test

exit:

new one:



Complex Boolean Expression: Example

Generate code for this:

if ((x < y)&& !((y < z) && ok))

return

else
y = y + 1

Compare to the
old translation.

branch(x<y,n1,else)

n1: branch(y<z,n2,then)

n2: branch(ok,else,then)

then: return

goto after

else: iload #y

iconst_1
iadd

istore #y

after:



Implementing branch

• Option 1: emit code using  branch, then rewrite

• Option 2: branch is a just a function in the 
compiler that expands into instructions

branch(c,nTrue,nFalse)

def compileBranch(c:Expression, 
nTrue : Label, nFalse : Label) : List[Bytecode] =

{ … }

The function takes two destination labels.



More Complex Control Flow



Destination Parameters in Compilation

• To compilation functions […] pass a label to which 
instructions should jump after they finish. 

– No fall-through

[ x = e ] after = // new parameter 'after'

[ e ]

istore #x

goto after // at the end jump to it

[ s1 ; s2 ] after =

[ s1 ] freshL

freshL: [ s2 ] after
we could have any junk in here
because ([s1] freshL) ends in a jump



Translation of if, while, return
with one 'after' parameter

[ if (c) t else e ] after =

nTrue: [ t ] after

nFalse: [ e ] after

branch(c,nTrue,nFalse)

test: branch(c,body,after)

body: [ s ] test

[ while (c) s ] after =

[ return exp ] after =

[ exp ]
ireturn



Generated Code for Example

[ if (x < y) return; else y = 2; ] after =

iload #x

iload #y

if_icmp_lt nTrue

goto nFalse

nTrue: return

nFalse: iconst_2

istore #y

goto after

Note: no goto after return because

– translation of 'if' does not generate goto as it did before, since it 
passes it to the translation of the body

– translation of 'return' knows it can ignore the 'after' parameter



break statement

A common way to exit from a loop is to use a 'break' statement e.g.

while (true) {

code1

if (cond) break

cond2

}

Consider a language that has expressions, assignments, the {…} 
blocks, 'if' statements, while, and a 'break' statement. 
The 'break' statement exits the innermost loop and can appear 
inside arbitrarily complex blocks and if conditions. 
How would translation scheme for such construct look like? 



Two Destination Parameters

[ s1 ; s2 ] after brk =

[ s1 ] freshL brk

freshL: [ s2 ] after brk

[ x = e ] after brk =

[ e ]

istore #x

goto after

[ return exp ] after brk =

[ exp ]
ireturn

[ break ] after brk =

goto brk

[ while (c) s ] after brk =

test:    branch(c,body,after) 
body:  [ s ] test after

this is where the second
parameter gets bound to 
the exit of the loop



if with two parameters

[ if (c) t else e ] after brk =

nTrue:  [ t ] after brk

nFalse: [ e ] after brk

branch(c,nTrue,nFalse)



break and continue statements?
Three parameters!

[ break ] after brk cont =
goto brk

[ continue ] after brk cont =
goto cont

[ while (c) s ] after brk cont =
test:    branch(c,body,after) 
body:  [ s ] test after test



Some High-Level Instructions for JVM



Method Calls

Invoking methods (arguments pushed onto stack)

invokestatic

invokevirtual

Returning value from methods:

ireturn – take integer from stack and return it

areturn – take reference from stack and return it

return – return from a method returning ‘void’



invokestatic
invokestatic

indexbyte1

indexbyte2

..., [arg1, [arg2 ...]] → ...

The unsigned indexbyte1 and indexbyte2 are used to construct 

an index into the run-time constant pool of the current class 
(§2.6), where the value of the index is 

(indexbyte1 << 8) | indexbyte2. The run-time constant pool 
item at that index must be a symbolic reference to a method 
(§5.1), which gives the name and descriptor (§4.3.3) of the 
method as well as a symbolic reference to the class in which the 
method is to be found. The named method is resolved (§5.4.3.3). 
The resolved method must not be an instance initialization 
method (§2.9) or the class or interface initialization method 
(§2.9). It must be static, and therefore cannot be abstract.

On successful resolution of the method, the class that declared 
the resolved method is initialized (§5.5) if that class has not 
already been initialized.

The operand stack must contain nargs argument values, where 
the number, type, and order of the values must be consistent with 
the descriptor of the resolved method.

If the method is synchronized, the monitor associated with the 
resolved Class object is entered or reentered as if by execution of 
a monitorenter instruction (§monitorenter) in the current thread.

If the method is not native, the nargs argument values are 
popped from the operand stack. A new frame is created 
on the Java Virtual Machine stack for the method being 
invoked. The nargs argument values are consecutively 
made the values of local variables of the new frame, 
with arg1 in local variable 0 (or, if arg1 is of type long or 
double, in local variables 0 and 1) and so on. Any 
argument value that is of a floating-point type undergoes value set 
conversion (§2.8.3) prior to being stored in a local variable. The 
new frame is then made current, and the Java Virtual Machine pc is 
set to the opcode of the first instruction of the method to be 
invoked. Execution continues with the first instruction of the 
method.

If the method is native and the platform-dependent code that 
implements it has not yet been bound (§5.6) into the Java Virtual 
Machine, that is done. The nargs argument values are popped from 
the operand stack and are passed as parameters to the code that 
implements the method. Any argument value that is of a floating-
point type undergoes value set conversion (§2.8.3) prior to being 
passed as a parameter. The parameters are passed and the code is 
invoked in an implementation-dependent manner. When the 
platform-dependent code returns, the following take place:

If the native method is synchronized, the monitor associated 
with the resolved Class object is updated and possibly exited as if 
by execution of a monitorexit instruction (§monitorexit) in the 
current thread.

If the native method returns a value, the return value of the 
platform-dependent code is converted in an implementation-
dependent way to the return type of the native method and 
pushed onto the operand stack.



invokevirtual
invokevirtual

indexbyte1

indexbyte2

..., objectref, [arg1, [arg2 ...]] →...
Description

The unsigned indexbyte1 and indexbyte2 are used to construct an 
index into the run-time constant pool of the current class (§2.6), 
where the value of the index is (indexbyte1 << 8) | indexbyte2. 
The run-time constant pool item at that index must be a symbolic 
reference to a method (§5.1), which gives the name and 
descriptor (§4.3.3) of the method as well as a symbolic reference 
to the class in which the method is to be found. The named 
method is resolved (§5.4.3.3). The resolved method must not be 
an instance initialization method (§2.9) or the class or interface 
initialization method (§2.9). Finally, if the resolved method is 
protected (§4.6), and it is a member of a superclass of the current 
class, and the method is not declared in the same run-time 
package (§5.3) as the current class, then the class of objectref 
must be either the current class or a subclass of the current class.

If the resolved method is not signature polymorphic (§2.9), then 
the invokevirtual instruction proceeds as follows.

Let C be the class of objectref. The actual method to be invoked is 
selected by the following lookup procedure:

If C contains a declaration for an instance method m that 
overrides (§5.4.5) the resolved method, then m is the method to 
be invoked, and the lookup procedure terminates.

Otherwise, if C has a superclass, this same lookup procedure is 
performed recursively using the direct superclass of C; the method 
to be invoked is the result of the recursive invocation of this 
lookup procedure.

Otherwise, an AbstractMethodError is raised.

The objectref must be followed on the operand stack by nargs 
argument values, where the number, type, and order of the values 
must be consistent with the descriptor of the selected instance 
method.

If the method is synchronized, the monitor associated with 
objectref is entered or reentered as if by execution of a 
monitorenter instruction (§monitorenter) in the current thread.

If the method is not native, the nargs argument values and 
objectref are popped from the operand stack. A new 
frame is created on the Java Virtual Machine stack for 
the method being invoked. The objectref and the 
argument values are consecutively made the values of 
local variables of the new frame, with objectref in local 
variable 0, arg1 in local variable 1 (or, if arg1 is of type 
long or double, in local variables 1 and 2), and so on. Any 
argument value that is of a floating-point type undergoes value set 
conversion (§2.8.3) prior to being stored in a local variable. The 
new frame is then made current, and the Java Virtual Machine pc is 
set to the opcode of the first instruction of the method to be 
invoked. Execution continues with the first instruction of the 
method.

...



Translating Method Calls: Example

[ x = objExpr.myMethodName(e1,e2) ] =

[ objExpr ]
[ e1 ]

[ e2 ]

invokevirtual  #13

istore #x

constant pool area:

0: "hello, world"

1:

...

13: className.myMethodName/(II)I

...



Rule for Method Call Translation

[ objExpr.myMethodName(e1,...,en) ] =

[ objExpr ]
[ e1 ]

...

[ en ]

invokevirtual #constantPoolAddr



Objects and References

ifnull label - consume top-of-stack reference and jump if it is null

ifnonnull label - consume top-of-stack reference, jump if not null

new #className - create fresh object of class pointed to by the offset 
#className in the constant pool
(does not invoke any constructors)

getfield #field – consume object reference from stack, 
then dereference the field of that object given 
by (field,class) stored in the #field pointer in the constant pool
and put the value of the field on the stack

putfield #field - consume an object reference obj and a value v
from the stack and store v it in the #field of obj

“If the field descriptor type is boolean, byte, char, short, or int, then the value must 
be an int.”

obj.field= v

obj.field



Array Manipulation

a = reference - “address” arrays

i = int arrays (and some other int-like value types)

Selected array manipulation operations:

newarray,  anewarray, multianewarray – allocate an 
array object and put a reference to it on the stack

aaload, iaload – take: a reference to array and index from stack
load the value from array and push it onto the stack

aastore, iastore – take: a reference to array, an index, a value 
from stack, store the value into the array index

arraylength – retrieve length of the array

Java arrays store the size of the array and its time, which enables 
run-time checking of array bounds and object types.



There are Floating Point Operations…
• fadd

• faload (for floating point arrays)

• fastore (for floating point arrays)

• fcmp<op>

• fconst_<f>

• fdiv

• fload

• fload_<n>

• fmul

• fneg

• frem

• freturn

• fstore

• fstore_<n>

• fsub

When needed,
READ THE JVM Spec 



Your          
Compiler        

Java Virtual Machine 
(JVM) Bytecode

i=0
while (i < 10) {
a[i] = 7*i+3
i = i + 1 }

source code
simplified Java-like
language

21: iload_2 
22: iconst_2 
23: iload_1 
24: imul
25: iadd
26: iconst_1 
27: iadd
28: istore_2 
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OPTIONAL MATERIAL:

Abstract Interpretation
(Cousot, Cousot 1977)

also known as
Data-Flow Analysis

(Kildall 1973)



Example: Constant propagation
Here is why it is useful

int a, b, step, i;

boolean c;

a = 0;

b = a + 10;

step = -1;

if (step > 0) {

i = a;

} else {

i = b;

}

c = true;

while (c) {

print(i);

i = i + step;    // can emit decrement

if (step > 0) {

c = (i < b);

} else {

c = (i > a); // can emit better instruction here

} // insert here (a = a + step), redo analysis

}



Goal of Data-Flow Analysis

Automatically compute information about the 
program

• Use it to report errors to user (like type errors)

• Use it to optimize the program

Works on control-flow graphs:
(like flow-charts)

x = 1
while (x < 10) {
x = x + 2

}



Interpretation and 
Abstract Interpratation

• Control-Flow graph is similar to AST

• We can

– interpret control flow graph

– generate machine code from it (e.g. LLVM, gcc)

– abstractly interpret it: do not push values, but 
approximately compute supersets of possible values
(e.g. intervals, types, etc.)



Compute Range of x at Each Point



What we see in the sequel

1. How to compile abstract syntax trees into 
control-flow graphs

2. Lattices, as structures that describe 
abstractly sets of program states (facts)

3. Transfer functions that describe how to 
update facts

4. Basic idea of fixed-point iteration



Generating Control-Flow Graphs

• Start with graph that has one entry and one 
exit node and label is entire program

• Recursively decompose the program to have 
more edges with simpler labels

• When labels cannot be decomposed further, 
we are done



Flattening Expressions
for simplicity and ordering of side effects



If-Then-Else

Better translation uses the "branch" instruction 
approach: have two destinations



While

Better translation uses the "branch" instruction



Example 1: Convert to CFG

while (i < 10) {

println(j);

i = i + 1;

j = j +2*i + 1;

}



Example 2: Convert to CFG

int i = n;

while (i > 1) {

println(i);

if (i % 2 == 0) {

i = i / 2;

} else {

i = 3*i + 1;

}

}



Example 2 Result

int i = n;

while (i > 1) {

println(i);

if (i % 2 == 0) {

i = i / 2;

} else {

i = 3*i + 1;

}

}



Translation Functions

[ s1 ; s2 ] vsource vtarget = 

[ s1 ] vsource vfresh 

[ s2 ] vfresh  vtarget

insert (vs,stmt,vt)=

cfg = cfg + (vs,stmt, vt)

[ x=y+z ] vs vt = insert(vs,x=y+z, vt)

when y,z are constants or variables

[ branch(x<y) ] vsource vtrue 

vfalse = 

insert(vsource,[x<y],vtrue);

insert(vsource,[!(x<y)],vfalse)



Analysis Domain (D)
Lattices



Lattice

Partial order: binary relation  (subset of some D2)
which is

– reflexive: x  x

– anti-symmetric: xy /\ yx -> x=y

– transitive:   xy /\ yz ->  xz

Lattice is a partial order in which every 
two-element set has least among its upper 
bounds and greatest among its lower bounds
• Lemma: if (D, ) is lattice and D is finite, 

then lub and glb exist for every finite set



Graphs and Partial Orders

• If the domain is finite, then partial order can be 
represented by directed graphs
– if x  y then draw edge from x to y

• For partial order, no need to draw x  z if
x  y and y  z. So we only draw non-transitive 
edges

• Also, because always x  x , we do not draw those 
self loops

• Note that the resulting graph is acyclic: if we had 
a cycle, the elements must to be equal



Domain of Intervals [a,b] where
a,b{-M,-127,0,127,M-1}



Defining Abstract Interpretation

Abstract Domain D describing which information 
to compute – this is often a lattice

– inferred types for each variable: x:T1, y:T2

– interval for each variable   x:[a,b], y:[a’,b’]

Transfer Functions, [[st]] for each statement st, 
how this statement affects the facts

– Example:



For now, we consider 
arbitrary integer bounds for intervals

• Really ‘Int’ should be BigInt, as in e.g. Haskell
• Often we must analyze machine integers

– need to correctly represent (and/or warn about) overflows 
and underflows

– fundamentally same approach as for unbounded integers

• For efficiency, many analysis do not consider arbitrary 
intervals, but only a subset of them

• We consider as the domain
– empty set (denoted  , pronounced “bottom”)
– all intervals [a,b] where a,b are integers and  a ≤ b, or 

where we allow a= -∞   and/or  b = ∞
– set of all integers [-∞ ,∞] is denoted T , pronounced “top”



Find Transfer Function: Plus

If

and we execute x= x+y

then 

Suppose we have only two integer variables: x,y

So we can let

a’= a+c b’ = b+d
c’=c d’ = d



Find Transfer Function: Minus

If

and we execute y= x-y

then 

Suppose we have only two integer variables: x,y

So we can let

a’= a          b’ = b
c’= a - d     d’ = b - c



Transfer Functions for Tests

if (x > 1) {

y = 1 / x
} else {

y = 42
}

Tests e.g. [x>1] come from translating if,while into 

CFG



Joining Data-Flow Facts

if (x > 0) {

y = x + 100

} else {

y = -x – 50

}

join



Handling Loops: Iterate Until Stabilizes

x = 1

while (x < 10) {

x = x + 2

}



Analysis Algorithm

var facts : Map[Node,Domain] = Map.withDefault(empty)
facts(entry) = initialValues

while (there was change)
pick edge (v1,statmt,v2) from CFG

such that facts(v1) has changed
facts(v2)=facts(v2) join transferFun(statmt, facts(v1))

}

Order does not matter for the 
end result, as long as we do not 
permanently neglect any  edge 
whose source was changed.



Work List Version

var facts : Map[Node,Domain] = Map.withDefault(empty)
var worklist : Queue[Node] = empty
def assign(v1:Node,d:Domain) = if (facts(v1)!=d) {
facts(v1)=d
for (stmt,v2) <- outEdges(v1) { worklist.add(v2) }

}
assign(entry, initialValues)
while (!worklist.isEmpty) {

var v2 = worklist.getAndRemoveFirst
update = facts(v2)
for (v1,stmt) <- inEdges(v2) 

{ update = update join transferFun(facts(v1),stmt) }
assign(v2, update)

}



Exercise: Run range analysis, 
prove that error is unreachable

int M = 16;
int[M] a;

x := 0;

while (x < 10) {

x := x + 3;

}

if (x >= 0) {

if (x <= 15)

a[x]=7; 

else

error;

} else {

error;
}

checks array accesses



Range analysis results
int M = 16;
int[M] a;

x := 0;

while (x < 10) {

x := x + 3;

}

if (x >= 0) {

if (x <= 15)

a[x]=7; 

else

error;

} else {

error;
}

checks array accesses



Simplified Conditions
int M = 16;
int[M] a;

x := 0;

while (x < 10) {

x := x + 3;

}

if (x >= 0) {

if (x <= 15)

a[x]=7; 

else

error;

} else {

error;
}

checks array accesses



Remove Trivial Edges, Unreachable Nodes
int M = 16;
int[M] a;

x := 0;

while (x < 10) {

x := x + 3;

}

if (x >= 0) {

if (x <= 15)

a[x]=7; 

else

error;

} else {

error;
}

checks array accesses

Benefits:

- faster execution (no 

checks)

- program cannot crash 

with error


