Soundness of Types

Ensuring that a type system
is not broken




Example: Tootool 0.1 Language
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Tootool is a rural community in the central east part of the Riverina
[New South Wales, Australia]. It is situated by road, about 4 kilometres east
from French Park and 16 kilometres west from The Rock.

Tootool Post Office opened on 1 August 1901 and closed in 1966. [Wikipedia]




unsound

Type System for Tootool 0.1

Pos < Int does it type check?
' def intSqrt(x:Pos) : Pos ={ ...}
Neg <: Int
var p : Pos
var g : Neg
varr : Pos

I'-x:T I'Fe: T assignment

' (x = e): void *

q=-3 I = {(p, Pos), (q, Neg), (1, Pos),
P=qQ (intSqrt, Pos — Pos)}

I'Fe T I'-T <: T :
, subtyping ,
I'-e T r =intSqrt(p)

Runtime error: intSqrt invoked
with a negative argument!

p: Pos Pos <: Int q: Neg Neg <: Int
p: Int q: Int

(p=q): void




What went wrong in Tootool/ 0.1 ?
does it type check? — yes

Pos <: Int def intSqrt(x:Pos) : Pos ={ ...}
Neg <: Int

var p : Pos

var g : Neg
e T [he T varr : Pos

assignment

['F (x = e): void q=-3 I'={(p, Pos), (g, Neq), (r, Pos),

: . _ = (intSqrt, Pos — Pos)}
I'Fe: T I |—7T <: T subtyping P .q
I'Fe T r = intSqrt(p)
Runtime error: intSqrt invoked
with a negative argument!
X must be able to store any e can have any value from T
value from T ? I'Fe: T

' (x =e): void

Cannot use I I e:T to mean “x promises it can storeany e € T"




Recall Our Type Derivation
does it type check? — yes

<: :

Pos <: Int def intSqgrt(x:Pos) : Pos ={...}

Neg <: Int var p : Pos
var g : Neg

PExiT  TreT aegnment  Vor " POS
'k (x = e): void q= '5(_ . = {(p, Pos), (q, Neg), (r, Pos),
e T T <: T subtyping P=qQ (intSqrt, Pos — Pos)}
[FEe T r = intSqrt(p)

Runtime error: intSqrt invoked
with a negative argument!

Values from p are . . . .
integers. But p p: Pos Pos <: Int q: Neg Neg <: Int

did not promise @2 IDD q: Int
to store all kinds N\ .
of integers/ Only (p—q). void

positive ones!




Corrected Type Rule for Assighment

Pos <: Int
Neg <: Int

does it type check?
def intSqgrt(x:Pos) : Pos ={...}
var p : Pos
var g : Neg

’ . varr : Pos
assignment

I'Fe: T 'ET <: T
I'Fe: T

X must be able to store any
value from T

(x,T) €l ['Fe

subtyping

d=3_  i={p. Pos), (g Neg), (1, Pos),
(intSqrt, Pos — Pos)}

/r =ntSqrt(p)

does not type check

e can have any value from T

- T

I" stores declarations (promises)

'+ (x = e): void




Corrected Type Rule for Assighment

does it type check?

Pos <: Int :

def intSqgrt(x:Pos) : Pos ={...}
Neg <: Int

var p : Pos

var g : Neg
’ | var r : Pos

aSS|gnment 5
void 9=" i = {(p, Pos), (a, Neg), (1, Pos),
TE e TF . F;T < T subtyping @ (intSqrt, Pos — Pos)}
(N

/r =ntSqrt(p)

does not type check

Is there another way to fix the type system ?




How could we ensure that some
other programs will not break?

Type System Soundness




Proving Soundness of Type Systems

e Goal of a sound type system:
— if a program type checks, it never “crashes”
— crash = some precisely specified bad behavior
e.g. invoking an operation with a wrong type

e dividing a string by another string: “cat” / “frog”
e trying to multiply a Window object by a File object
e.g. dividing an integer by zero
e Never crashes: no matter how long it executes

— proof is done by induction on program execution




Proving Soundness by Induction

VG || VG VG VG VG VG Good

Program moves from state to state

Bad state = state where program is about to exhibit a bad
operation ( “cat” / “frog” )
Good state = state that is not bad

To prove:
program type checks = states in all executions are good

Usually need a stronger inductive hypothesis;

some notion of very good (VG) state such that:
program type checks = program’s initial state is very good
state is very good = next state is also very good
state is very good - state is good (not about to crash)




A Simple Programming Language




Program State

var X : Pos Initially, all variables
have value 1

vary : Int

var z : Pos

values of variables:

x=3 €= — position in source

y=5 x=1
y=1

z=4

X=X+2 2=1

y=x/z

Z=7Z+X




Program State

var X : Pos
vary : Int
var z : Pos |
X=3 values of variables:
y=-5 < position in source X=3
z=4 y = 1
z=1
X=X+72Z
v=Xx/z

Z=72+X




Program State

var X : Pos

vary : Int

var z : Pos |

X=3 values of variables:
y=-5 X=3

z=4 N position in source y=-5

X=X+2 z=1

v=Xx/z

Z=7+X




var X : Pos
vary : Int
var z : Pos
X=3
y=-5
z=4
X=X+z2
v=Xx/z

Z=7Z+X

Program State

position in source

values of variables:
X=3
y=-5
z=4




Program State

var X : Pos
vary : Int
var z : Pos :
¥ =3 values of variables:
y_ 5 X = 7
7=4 y:‘5
z=4
X=X+2
y=x/12 < — position in source

Z=7Z+X




Program State

var X : Pos

vary : Int

var z : Pos :

¥ =3 values of variables:
y=_5 X=7

z=4 y=1

X=X+2 z=4

y=x/12

7=7+X << position in source

formal description of such program execution
is called operational semantics




Operational semantics

Operational semantics gives meaning to programs by describing
how the program state changes as a sequence of steps.

e Small-step (or Structural) Operational Semantics (SOS):
consider individual steps (e.g. z=x +v)

V: set of variables in the program

pC: integer variable denoting the program counter
g:V—int function giving the values of program variables
(g, pc) program state

Then, for each possible statement in the program we define how it
changes the program state.

e Big-step semantics: consider the effect of entire blocks




Operational semantics

——
«Q

«——
«

PC. z = X+y pC. z

| |

g =9lz » g(x) +g(y)] g =9[z » g(x)]

X

Operation semantics

« Ifpc:z=x+vy,(g,pc)—>(g,pc+1),whereg =gz
9(x)+g(y)]

* Ifpc:z=x, (g, pc) = (g, pc + 1), where g’ = g[z - g(X)]




Type Rules of Simple Language

Programs:

var x; : Pos
var x, : Int

var X, : Pos

X, =X, +X

\

J

\

k: Pos -k: Int

Type rules:
['={(x,, Pos),
_ _ (x,, Int),
variable declarations
var X: Pos (strictly positive) '
> or (X Pos)}
var x: Int Pos <: Int
(z,T) €T Tke:T
followed by [k (z=e):void
statements of one of the forms Prz:T T<T
'Fax: T
1) x=k
> 2) X=X ,
3) X =%/ % (x,T)el ey : Int eo : Int
4) %=X+ % Fto:T e1 +eq: Int
~/  (No complex expressions)
e1: Int es : Pos e1 : Pos ey : Pos
e1/es : Int e1 + ey : Pos




Bad State: About to Divide by Zero
(Crash)

var X : Pos
vary : Int
var z : Pos :
=1 values of variables:
=-1 x=1
= L
Z=X+Yy y .
Z =
X=X+2
y=x/z << — position in source
Z2=27+

Definition: state is bad if the next instruction is of the form
X; =X/ X, and x, has value 0 in the current state.




Good State: Not (Yet) About to Divide by Zero

var X : Pos
vary : Int
var z : Pos |

values of variables:
x=1

x=1
y=-1 -
7=X+ y<~ — position in source y=-1

z=1
X=X+2
v=x/z Good
Z=7+X

Definition: state is good if it is not bad.

Definition: state is bad if the next instruction is of the form
X; =X/ X, and x, has value 0 in the current state.




Good State: Not (Yet) About to Divide by Zero

var X : Pos

vary : Int

var z : Pos .

=1 values of variables:
=-1 x=1
— .

Z=X+Yy Y

X=X+72 pOSItIOn IN source

y=x/z Good

Z=7+X

Definition: state is good if it is not bad.

Definition: state is bad if the next instruction is of the form
X; =X/ X, and x, has value 0 in the current state.




Moved from Good to Bad in One Step!

Being good is not preserved by one step, not inductive!

It is very local property, does not take future into account.
var x : Pos

vary : Int
var z : Pos .
=1 values of variables:
=-1 x=1
— .
Z=X+Yy y .
Z =
X=X+2
_ > - L
y =X / Z p05|t|on IN source Bad
Z=7+X

Definition: state is good if it is not bad.

Definition: state is bad if the next instruction is of the form
X; =X/ X, and x, has value 0 in the current state.




Being Very Good: A Stronger Inductive Property
Pos={1,2,3, ..}

var X : Pos

vary : Int

var z . Pos :

¥ =1 values of variables:
-1 This state is already not very good. Xx=1

Z=X+Y y=-1

X=X+12 << — position in source z=0 ¢Pos

y=x/12

Z=72+X

Definition: state is good if it is not about to divide by zero.

Definition: state is very good if each variable belongs to the
domain determined by its type (if z:Pos, then z is strictly positive).




Proving Soundness - Intuition

We want to show if a program type checks:
— It will be very good at the start

— if itis very good in the current step, it will remain
very good in the next step

— If it is very good, it will not crash

Hence, please type check your program, and it will never crash!

Soundnes proof = defining “very good” and
checking the properties above.




Proving Soundness in Our Case

Holds: in initial state, variables are =1
e |f a program type checks : 1 e Pos
. / 1 e int
— It will be very good from at start.

— if it is very good in the current step, it will
remain very good in the next

— If it is very good, it will not crash.

If next state is x / z, type rule ensures z has type Pos
Because state is very good, it means z € Pos
so z is not 0, and there will be no crash.

Definition: state is very good if each variable belongs to the
domain determined by its type (if z:Pos, then z is strictly positive).




Proving that “very goodness” is
preserved by state transition

e How do we prove

— if you are very good, then you will remain
very good in the next step

— Irrespective of the actual program

e We could use SOS — small step operational semantics
here.




Proving that “very goodness” is
preserved by state transition

Hypothesize that g is very good

g =g[z = g(x) + g(y)] g =4l

Prove that g’ is very good
When the program type checks

e Do this for every possible “step” of the operational
semantics




Proving this for our little type system

Hypothesize that the following holds in g
For all vars x, x:Pos => x is strictly positive

Vx.I' Fx:Pos=g(x)>0

Jg:var->lnt Jg
PC. z = X+y pC. z = X
g’ =g[z = g(x) + g(y)] g’ =g[z » g(x)]

Prove that the following holds in g’
For all vars x, x:Pos => x is strictly positive

Vx.I' Fx:Pos=g'(x)>0

e Can we prove this ?

— Only if we are given that the program type checks




Recall the Type Rules

Pos <: Int

(x,T) el F'kFe:T
' (x=¢e):void

k: Pos

I'a:T T <:T'
F'a:T’
(x,T) el e : Int es : Int
'ta:T e1+eo: Int
e1 : Int es : Pos e1 : Pos eg : Pos
-k: Int

e1/es : Int

e1 + eq : Pos




Back to the start

k: Pos -k: Int

I'Fx: T I'Fe: T

' (z=e):void

I'Fx:T T <: T’

'Fx:T

(x,T) el
I'Fzx:T

e1 : Int eo : Int

e1 + eo: Int

ey : Int es : Pos

e1/es : Int

ey : Pos es : Pos

e1 + eo : Pos

Does the proof still work?

If not, where does it break?




Let’s type check some programs

Example 1
var X : Pos
vary : Pos
var z : Pos :
values of variables:

y=3
;=9 x=1
7 =% + y(— position in source y=3

z=12
X=X+2Z
y=x/z the next statement is: z=x+y
Z=7+X where x,y,z are declared Pos.

Goal: provide a type derivation for the program




Example 2

var X : Pos
vary : Int
var z : Pos :
values of variables:
y=- x=1
z=2 -
Z=Xx+y position in source y=-3
z=12
X=X+2
y=x/z the next statement is: z=x+y
Z=17+X where x,z declared Pos, y declared Int

Goal: prove that the program type checks
impossible, because z=x+y would not type check
How do we know it could not type check?




Must Carefully Check Our Type Rules

Type rules:
['={(x,, Pos),
var x : Pos (%, Int),
vary : Int Conclude that the only (X o)}
var z : Pos Lypes we can derive are: bos <. it
y=-5 X : Pos, x : Int
=9 y:lnt (x, T)eT Cke:T
Int 't (x=¢e):void
7=X+Y Xx+y:lIn
X=X+ 7 'txz:T T <:T
- / Cannot type check Fha.T
=X/ Z . . .
Y Z=X+YylIn this environment.
7=7+X (., T)el e :Int eo : Int
'tx:T e1+eq: Int
e1: Int es : Pos e1 : Pos ey : Pos
e1/es : Int e1 + ey : Pos

k: Pos -k: Int




We would need to check all cases
(there are many, but they are easy)




Remark

e We used in examples Pos <: Int

e Same examples work if we have

classInt{... }
class Pos extends Int{ ... }

and is therefore relevant for OO languages




What if we want more complex types?

class A { } + Should it type check?
class B extends A 1, poes this type check in Java?
void tool) ] + can you run it?

} ) _ | .
class Test | Does this type check in Scala”

public static void main (Stringl]

args) {
B[] b = new B[5];
Al]l a;
a = b;
System.out.println("Hello,");
al0] = new A();
System.out.println ("world!");

b[0].foo();




What if we want more complex types?

Suppose we add to our language a reference type:

class Ref[T](var content : T)

Programs:
var X, : Pos
var x, : Int
var X, : Ref[Int]
var x, : Ref[Pos]

X=Y

X=y+2z
x=y/z

X =Yy + z.content
X.content =y

Exercise 1.

Extend the type rules to use with
Ref[T] types.

Show your new type system is
sound.

Exercise 2:

Can we use the subtyping rule?

If not, where does the proof break?

T <: T
Ref|[T] <: Ref[T’]




Extending the type system

Pos <: Int
I' - e : Ref[T]
(@,T)eT Thre:T I' - e.content : T
'k (z=e):wvoid
reg:T T T (v,Ref[T) €T’ T'ke:T
FFax:T
I' - (v.content = e): T
(x, T) el e : Int eo : Int
I'Ex:T e1 + e Int
k: Pos -k: Int
e1 : Int es 1 Pos e1 : Pos es : Pos

e1/es : Int e1 +eq: Pos




Simple Parametric Class —
Exercise Part 2

class Ref[T](var content : T)
Can we use the subtyping rule

T <: T Pos <: Int
Ref[T] <: Ref[T’] Ref[Pos] <: Ref[Int]
var X : Ref[Pos]
var y : Ref[Int] I
var z: Int I' - x: Ref[Pos] T F Ref[Pos] <:Ref[Int]
, Ref[I r ' '
x.content=1 (:Reflint]) €
y.content =-1 I' = x: Ref[Int]
y=X I' (y = x):void

y.content=0

Zz =12/ x.content
/ type checks




Simple Parametric Class

class Ref[T](var content : T)

Can we use the subtyping rule

T <. T7
Ref[T] <: Ref[T’]

var X : Ref[Pos]
var y : Ref[Int] X _—— 1
var z : Int

Xx.content =1 y —> 1
y.content =-1

y =X N
y.content=0

z =z / x.content

Ref[Pos]

Ref[Int]




Simple Parametric Class

class Ref[T](var content : T)

Can we use the subtyping rule

T <. T7
Ref[T] <: Ref[T’]

Ref[Pos]

var X : Ref[Pos]

vary : Ref[Int] « ___—7 1
var z : Int / f
x.content=1 1 Ref[Int]

y
y.content =-1

y=X -—
y.content=0

z =z / x.content




Simple Parametric Class

class Ref[T](var content : T)
Can we use the subtyping rule

Y

Ref[ I <™Ref[T’]

Ref[Pos]

var X : Ref[Pos]

var y : Ref[Int] _— 0

X
var z : Int / -
x.content=1 -1 effing

y
y.content =-1
y=X

y.content=0 CRASHES
z =z / x.content




Analogously

class Ref[T](var content : T)

Can we use the converse subtyping rule
T <: T
Ref[T’] <: Ref[T]

Ref[Pos]

var X : Ref[Pos]
var y : Ref[Int]

X
var z : Int \
Ref[Int]

x.content =1 y > 0
y.content =-1
X=Y

y.content=0 CRASHES
z =z / x.content




Mutable Classes do not
Preserve Subtyping

class Ref[T](var content : T)
Evenif T<: T,
Ref[T] and Ref[T’] are unrelated types

var X : Ref[T]
vary : Ref[T’]

X=Y <«—type checks only if T=T




Same Holds for Arrays, Vectors,
all mutable containers

Evenif T<: T,
Array[T] and Array[T’] are unrelated types

var x : Array[Pos](1)
vary : Array[Int](1)
var z:Int

x[0] =1

y[0] =-1

Y =X

y[0] =0

z =2/ x[0]




Case in Soundness Proof Attempt

class Ref[T](var content : T)

Can we use the subtyping rule

T <. T7
Ref[T] <: Ref[T’]

var X : Ref[Pos]
var y : Ref[Int]
var z : Int
x.content=1
y.content =-1
Yy =X
y.content=0

e

prove that runtime value of each variable
belongs to its type.

«——
z =z / x.content

Ref[Pos]

Ref[Int]




Soundness Proof Attempt [Cont.]

T <: T
var x : Ref[Pos] HeflT] <= eflT] Ref[Pos]
var y : Ref[Int] Siros
varz: Int X — 1
x.content =1 / Ref[Int]
y.content = -1 )4 -1

Yy =X
y.content=0
z =z / x.content

prove that runtime value of each variable belongs to its
type.

e Need to have an operational semantics for the language
e State g:(Var U Addr) -> (Int U Addr)

e Avery good property that we need :

- Vx.T  x : Ref[Pos] = g(g(x)) >0

— Cannot prove this property is preserved because “y.content = 0” may change
the value of “x.context”, and hence break x’es type if it is Ref[Pos].

— Proof will not work for any stronger properties also because we have a
counter-example




Mutable vs Immutable Containers

e Immutable container, Coll[T]
— has methods of form e.g.  get(x:A) : T
— if T<: T, then Coll[T’] has get(x:A): T’
—wehave (A=2T)<:(A2>T)
covariant rule for functions, so Coll[T] <: Coll[T’]
e \Write-only data structure have
— setter-like methods, set(v:T) : B
— if T<: T/, then Container[T’] has  set(v:T’) : B

— would need (T’ =2 B) <: (T = B)
contravariance for arguments, so Coll[T’] <: Coll[T]

e Read-Write data structure need both. That is
coll[T] is invariant in T




A cool exercise —
Physical Units as Types

Define a “unit type” by the following grammar
u-b|lut|u*u
b—- kg|m|s|A|K]|mole|cd
We use the syntactic sugar
- u" to denote u multiplied with u n-times

u —
- —todenote u; * u; 1
2

Give the type rules for the arithmetic operations +,*, /,
sqrt,sin, abs.

Trigonometric functions take argument without units
An expression hasnounitsifI' - e: 1




Physical Units as Types
Part 2

e The unit expressions are strings, so

§2m2 _ :
mZ; and s will not be considered as same types though they
have same units

e How can we modify the type rules so that they type check
expressions, whenever their units match as per physics?




Physical Units as Types
Part 3

Determine the type of T in the following code fragment.
e val x:<m> =800

e valy:<m>=6378

e valg:<m/(s*s)>=9.8

e valR=x+y

e valw =sqgrt(g/R)

e valT=(2*Pi)/w




Physical Units as Types
Part 4

Suppose you want to use the unit feet in addition to the Sl units.
How can you extend your type system to accommodate for this?

(Assume that 1m = 3.28084 feet.)




