
Soundness of Types

Ensuring that a type system 
is not broken



Example: Tootool 0.1 Language

Tootool is a rural community in the central east part of the Riverina

[New South Wales, Australia]. It is situated by road, about 4 kilometres east 

from French Park and 16 kilometres west from The Rock.

Tootool Post Office opened on 1 August 1901 and closed in 1966.  [Wikipedia]



Type System for Tootool 0.1

Pos <: Int
Neg <: Int

does it type check?
def intSqrt(x:Pos) : Pos = { ...}
var p : Pos
var q : Neg
var r : Pos
q = -5
p = q
r = intSqrt(p)

Runtime error: intSqrt invoked 
with a negative argument!

unsound

 = {(p, Pos), (q, Neg), (r, Pos), 

(intSqrt, Pos  Pos)}

assignment

subtyping



What went wrong in Tootool 0.1 ?

Pos <: Int
Neg <: Int

does it type check? – yes 
def intSqrt(x:Pos) : Pos = { ...}
var p : Pos
var q : Neg
var r : Pos
q = -5
p = q
r = intSqrt(p)

assignment

subtyping

= {(p, Pos), (q, Neg), (r, Pos), 

(intSqrt, Pos  Pos)}

x must be able to store any 

value from T

e can have any value from T

Cannot use   ⊢ 𝑒: 𝑇 to mean “x promises it can store any e  T”

Runtime error: intSqrt invoked 
with a negative argument!



Recall Our Type Derivation

Pos <: Int
Neg <: Int

does it type check? – yes 
def intSqrt(x:Pos) : Pos = { ...}
var p : Pos
var q : Neg
var r : Pos
q = -5
p = q
r = intSqrt(p)

assignment

subtyping

¡ = {(p, Pos), (q, Neg), (r, Pos), 

(intSqrt, Pos  Pos)}

Values from p are 

integers. But p 

did not promise 

to store all kinds 

of integers/ Only 

positive ones!

Runtime error: intSqrt invoked 
with a negative argument!



Corrected Type Rule for Assignment

Pos <: Int
Neg <: Int

does it type check? 
def intSqrt(x:Pos) : Pos = { ...}
var p : Pos
var q : Neg
var r : Pos
q = -5
p = q
r = intSqrt(p)

assignment

subtyping

¡ = {(p, Pos), (q, Neg), (r, Pos), 

(intSqrt, Pos  Pos)}

x must be able to store any 

value from T

e can have any value from T

 stores declarations (promises)

does not type check



Corrected Type Rule for Assignment

Pos <: Int
Neg <: Int

does it type check? 
def intSqrt(x:Pos) : Pos = { ...}
var p : Pos
var q : Neg
var r : Pos
q = -5
p = q
r = intSqrt(p)

assignment

subtyping

¡ = {(p, Pos), (q, Neg), (r, Pos), 

(intSqrt, Pos  Pos)}

Is there another way to fix the type system ? 

does not type check



How could we ensure that some 
other programs will not break?

Type System Soundness



Proving Soundness of Type Systems

• Goal of a sound type system:

– if a program type checks, it never “crashes”

– crash = some precisely specified bad behavior

e.g. invoking an operation with a wrong type

• dividing a string by another string:  “cat” / “frog”

• trying to multiply a Window object by a File object

e.g. dividing an integer by zero

• Never crashes: no matter how long it executes

– proof is done by induction on program execution



Proving Soundness by Induction

• Program moves from state to state

• Bad state = state where program is about to exhibit a bad 
operation ( “cat” / “frog” )

• Good state = state that is not bad

• To prove:
program type checks  states in all executions are good

• Usually need a stronger inductive hypothesis;
some notion of very good (VG) state such that:
program type checks  program’s initial state is very good
state is very good  next state is also very good
state is very good  state is good (not about to crash)

VG VG VG VG VG VGVG VG VG VG VG
Good

VG



A Simple Programming Language



Program State

var x : Pos
var y : Int
var z : Pos
x = 3
y = -5
z = 4
x = x + z
y = x / z
z = z + x

values of variables:
x = 1
y = 1
z = 1

position in source

Initially, all variables 

have value 1



Program State

var x : Pos
var y : Int
var z : Pos
x = 3
y = -5
z = 4
x = x + z
y = x / z
z = z + x

values of variables:
x = 3
y = 1
z = 1

position in source



Program State

var x : Pos
var y : Int
var z : Pos
x = 3
y = -5
z = 4
x = x + z
y = x / z
z = z + x

values of variables:
x = 3
y = -5
z = 1

position in source



Program State

var x : Pos
var y : Int
var z : Pos
x = 3
y = -5
z = 4
x = x + z
y = x / z
z = z + x

values of variables:
x = 3
y = -5
z = 4position in source



Program State

var x : Pos
var y : Int
var z : Pos
x = 3
y = -5
z = 4
x = x + z
y = x / z
z = z + x

values of variables:
x = 7
y = -5
z = 4

position in source



Program State

var x : Pos
var y : Int
var z : Pos
x = 3
y = -5
z = 4
x = x + z
y = x / z
z = z + x

values of variables:
x = 7
y = 1
z = 4

position in source

formal description of such program execution 
is called operational semantics 



Operational semantics

Operational semantics gives meaning to programs by describing 
how the program state changes as a sequence of steps.

• Small-step (or Structural) Operational Semantics (SOS): 
consider individual steps (e.g. z = x + y)

V: set of variables in the program

pc: integer variable denoting the program counter

g: V  Int function giving the values of program variables

(g, pc) program state

Then, for each possible statement in the program we define how it 
changes the program state.

• Big-step semantics: consider the effect of entire blocks



Operational semantics

Operation semantics 

• If pc: z = x + y, (g, pc)  (g’, pc + 1), where g’ = g[z ↦
g(x)+g(y)]

• If pc: z = x, (g, pc)  (g’, pc + 1), where g’ = g[z ↦ g(x)]

pc: z = x+y

g

g’ = g[z ↦ g(x) + g(y)]

pc: z = x

g

g’ = g[z ↦ g(x)]



Type Rules of Simple Language

var x1 : Pos
var x2 : Int
...
var xn : Pos

xi = xj

xp = xq + xr

xa = xb / xc

...
xp = xq + xr

Programs:
Type rules:
 = { (x1, Pos),

(x2, Int), 
…
(xn, Pos)}

Pos <: Int

variable declarations

var x: Pos (strictly positive)

or 

var x: Int

followed by

statements of one of the forms
1) xi=k
2) xi = xj

3) xi = xj / xk

4) xi = xj + xk

(No complex expressions)



Bad State: About to Divide by Zero 
(Crash)

var x : Pos
var y : Int
var z : Pos
x = 1
y = -1
z = x + y
x = x + z
y = x / z
z = z + x

values of variables:
x = 1
y = -1
z = 0

Definition: state is bad if the next instruction is of the form
xi = xj / xk and xk has value 0 in the current state.

position in source



Good State: Not (Yet) About to Divide by Zero

var x : Pos
var y : Int
var z : Pos
x = 1
y = -1
z = x + y
x = x + z
y = x / z
z = z + x

values of variables:
x = 1
y = -1
z = 1

Definition: state is good if it is not bad.

Good

Definition: state is bad if the next instruction is of the form
xi = xj / xk and xk has value 0 in the current state.

position in source



Good State: Not (Yet) About to Divide by Zero

var x : Pos
var y : Int
var z : Pos
x = 1
y = -1
z = x + y
x = x + z
y = x / z
z = z + x

values of variables:
x = 1
y = -1
z = 0

Definition: state is good if it is not bad.

Good

Definition: state is bad if the next instruction is of the form
xi = xj / xk and xk has value 0 in the current state.

position in source



Moved from Good to Bad in One Step!

var x : Pos
var y : Int
var z : Pos
x = 1
y = -1
z = x + y
x = x + z
y = x / z
z = z + x

values of variables:
x = 1
y = -1
z = 0

Bad

Definition: state is good if it is not bad.

Being good is not preserved by one step, not inductive!
It is very local property, does not take future into account.

Definition: state is bad if the next instruction is of the form
xi = xj / xk and xk has value 0 in the current state.

position in source



Being Very Good: A Stronger Inductive Property

var x : Pos
var y : Int
var z : Pos
x = 1
y = -1
z = x + y
x = x + z
y = x / z
z = z + x

values of variables:
x = 1
y = -1
z = 0

Definition: state is good if it is not about to divide by zero.

Definition: state is very good if each variable belongs to the 
domain determined by its type (if z:Pos, then z is strictly positive).

This state is already not very good.

Pos =  { 1, 2, 3, ... }

position in source
∉ Pos



Proving Soundness - Intuition

We want to show if a program type checks:

– It will be very good at the start

– if it is very good in the current step, it will remain 
very good in the next step

– If it is very good, it will not crash

Hence, please type check your program, and it will never crash!

Soundnes proof = defining “very good” and 
checking the properties above.



Proving Soundness in Our Case

Definition: state is very good if each variable belongs to the 
domain determined by its type (if z:Pos, then z is strictly positive).

Holds: in initial state, variables are =1

• If a program type checks : 

– It will be very good from at start.

– if it is very good in the current step, it will 
remain very good in the next 

– If it is very good, it will not crash.

If next state is x / z, type rule ensures z has type Pos
Because state is very good, it means z  Pos
so z is not 0, and there will be no crash.

1  Pos

1  Int



Proving that “very goodness” is 
preserved by state transition

• How do we prove 

– if you are very good, then you will remain 
very good in the next step

– Irrespective of the actual program

• We could use SOS – small step operational semantics 
here.



Proving that “very goodness” is 
preserved by state transition

• Do this for every possible “step” of the operational 
semantics

pc: z = x+y

g

g’ = g[z ↦ g(x) + g(y)]

pc: z = x

g

g’ = g[z ↦ g(x)]

Hypothesize that g is very good

Prove that g’ is very good

When the program type checks



Proving this for our little type system

• Can we prove this ? 
– Only if  we are given that the program type checks

pc: z = x+y

g

g’ = g[z ↦ g(x) + g(y)]

pc: z = x

g

g’ = g[z ↦ g(x)]

Hypothesize that the following holds in g
For all vars x, x:Pos => x is strictly positive

∀𝑥. Γ ⊢ 𝑥 ∶ 𝑃𝑜𝑠 ⇒ 𝑔 𝑥 > 0

Prove that the following holds in g’
For all vars x, x:Pos => x is strictly positive

: var -> Int

∀𝑥. Γ ⊢ 𝑥 ∶ 𝑃𝑜𝑠 ⇒ 𝑔′ 𝑥 > 0



Recall the Type Rules

Pos <: Int



Back to the start

Does the proof still work?

If not, where does it break?



Let’s type check some programs
Example 1

var x : Pos
var y : Pos
var z : Pos
y = 3
z = 2
z = x + y
x = x + z
y = x / z
z = z + x

values of variables:
x = 1
y = 3
z = 2

the next statement is: z=x+y
where x,y,z are declared Pos.

Goal: provide a type derivation for the program

position in source



Example 2

var x : Pos
var y : Int
var z : Pos
y = -5
z = 2
z = x + y
x = x + z
y = x / z
z = z + x

values of variables:
x = 1
y = -5
z = 2

the next statement is: z=x+y
where x,z declared Pos, y declared Int

Goal: prove that the program type checks 
impossible, because z=x+y would not type check

How do we know it could not type check?

position in source



Must Carefully Check Our Type Rules

var x : Pos
var y : Int
var z : Pos
y = -5
z = 2
z = x + y
x = x + z
y = x / z
z = z + x

Conclude that the only 
types we can derive are:

x : Pos, x : Int
y : Int
x + y : Int

Cannot type check
z = x + y in this environment.

Type rules:
 = { (x1, Pos),

(x2, Int), 
…
(xn, Pos)}

Pos <: int



We would need to check all cases
(there are many, but they are easy)



Remark

• We used in examples Pos <: Int

• Same examples work if we have

class Int { ... }
class Pos extends Int { ... }

and is therefore relevant for OO languages



What if we want more complex types?
class A { } 

class B extends A { 

void foo() { } 

}

class Test { 

public static void main(String[] 

args) { 

B[] b = new B[5]; 

A[] a; 

a = b; 

System.out.println("Hello,"); 

a[0] = new A(); 

System.out.println("world!"); 

b[0].foo(); 

}

} 

• Should it type check?

• Does this type check in Java?

• can you run it? 

• Does this type check in Scala?



What if we want more complex types?

Suppose we add to our language a reference type:

class Ref[T](var content : T)

var x1 : Pos
var x2 : Int
var x3 : Ref[Int]
var x4 : Ref[Pos]

x = y
x = y + z
x = y / z
x = y + z.content
x.content = y
…

Programs:
Exercise 1: 

Extend the type rules to use with 

Ref[T] types.

Show your new type system is 

sound.

Exercise 2:

Can we use the subtyping rule?

If not, where does the proof break?



Extending the type system

Pos <: Int
Γ ⊢ 𝑒 ∶ Ref[T]

Γ ⊢ 𝑒. 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 ∶ T

𝑣, Ref T ∈ Γ

Γ ⊢ (𝑣. 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 = 𝑒): T

Γ ⊢ 𝑒 ∶ T



Simple Parametric Class –
Exercise Part 2

class Ref[T](var content : T)

Can we use the subtyping rule

var x : Ref[Pos]
var y : Ref[Int]
var z : Int
x.content = 1
y.content = -1
y = x
y.content = 0
z = z / x.content



type checks

Γ ⊢ x: Ref Pos Γ ⊢ Ref Pos <: Ref[Int]

Γ ⊢ 𝑥: Ref[Int]

y, Ref Int ∈ Γ

Γ ⊢ (𝑦 = 𝑥): void



Simple Parametric Class

class Ref[T](var content : T)

Can we use the subtyping rule

var x : Ref[Pos]
var y : Ref[Int]
var z : Int
x.content = 1
y.content = -1
y = x
y.content = 0
z = z / x.content

1

-1

Ref[Pos]

Ref[Int]

x

y



Simple Parametric Class

class Ref[T](var content : T)

Can we use the subtyping rule

var x : Ref[Pos]
var y : Ref[Int]
var z : Int
x.content = 1
y.content = -1
y = x
y.content = 0
z = z / x.content

1

-1

Ref[Pos]

Ref[Int]

x

y



Simple Parametric Class

class Ref[T](var content : T)

Can we use the subtyping rule

var x : Ref[Pos]
var y : Ref[Int]
var z : Int
x.content = 1
y.content = -1
y = x
y.content = 0
z = z / x.content

0

-1

Ref[Pos]

Ref[Int]

x

y

CRASHES         



Analogously

class Ref[T](var content : T)

Can we use the converse subtyping rule

var x : Ref[Pos]
var y : Ref[Int]
var z : Int
x.content = 1
y.content = -1
x = y
y.content = 0
z = z / x.content

1

0

Ref[Pos]

Ref[Int]

x

y

CRASHES         



Mutable Classes do not 
Preserve Subtyping

class Ref[T](var content : T)

Even if T <: T’, 

Ref[T] and Ref[T’] are unrelated types

var x : Ref[T]
var y : Ref[T’]
...
x = y
...

type checks only if T=T’



Same Holds for Arrays, Vectors, 
all mutable containers

var x : Array[Pos](1)
var y : Array[Int](1)
var z : Int
x[0] = 1
y[0] = -1
y = x
y[0] = 0
z = z / x[0]

Even if T <: T’, 

Array[T] and Array[T’] are unrelated types



Case in Soundness Proof Attempt

class Ref[T](var content : T)

Can we use the subtyping rule

var x : Ref[Pos]
var y : Ref[Int]
var z : Int
x.content = 1
y.content = -1
y = x
y.content = 0
z = z / x.content

prove that runtime value of each variable 
belongs to its type.

1

-1

Ref[Pos]

Ref[Int]

x

y



Soundness Proof Attempt [Cont.]

• Need to have an operational semantics for the language

• State g : (Var ∪ Addr) -> (Int ∪ Addr)  

• A very good property that we need :

– ∀𝑥. Γ ⊢ x ∶ Ref Pos ⇒ 𝑔 𝑔 𝑥 > 0

– Cannot prove this property is preserved because “y.content = 0”  may change 
the value of “x.context”, and hence break x’es type if it is Ref[Pos].

– Proof will not work for any stronger properties also because we have a 
counter-example

var x : Ref[Pos]
var y : Ref[Int]
var z : Int
x.content = 1
y.content = -1
y = x
y.content = 0
z = z / x.content

prove that runtime value of each variable belongs to its 
type.

1

-1

Ref[Pos]

Ref[Int]

x

y



Mutable vs Immutable Containers

• Immutable container, Coll[T]
– has methods of form e.g.    get(x:A) : T
– if T <: T’, then Coll[T’] has get(x:A) : T’
– we have  (A  T) <: (A T’)

covariant rule for functions, so Coll[T] <: Coll[T’]

• Write-only data structure have
– setter-like methods,  set(v:T) : B
– if T <: T’, then Container[T’] has set(v:T’) : B
– would need (T’  B) <: (T  B)

contravariance for arguments, so Coll[T’] <: Coll[T]

• Read-Write data structure need both. That is 
coll[T] is invariant in T



A cool exercise –
Physical Units as Types

• Define a “unit type” by the following grammar

• 𝑢 → 𝑏 𝑢−1 𝑢 ∗ 𝑢

• 𝑏 → 𝑘𝑔 𝑚 𝑠 𝐴 𝐾 𝑚𝑜𝑙𝑒 𝑐𝑑

• We use the syntactic sugar 
– 𝑢𝑛 to denote 𝑢 multiplied with 𝑢 n-times

–
𝑢1

𝑢2
to denote 𝑢1 ∗ 𝑢2

−1

• Give the type rules for the arithmetic operations +,∗, /, 
𝑠𝑞𝑟𝑡 , sin, 𝑎𝑏𝑠. 

• Trigonometric functions take argument without units

• An expression has no units if Γ ⊢ 𝑒: 1



Physical Units as Types
Part 2

• The unit expressions are strings, so 

•
𝑆2𝑚2

𝑚2𝑠
and 𝑠 will not be considered as same types though they 

have same units

• How can we modify the type rules so that they type check 
expressions, whenever their units match as per physics?



Physical Units as Types 
Part 3

Determine the type of T in the following code fragment. 

• val x: <m> = 800

• val y: <m> = 6378

• val g: <m/(s*s)> = 9.8

• val R = x + y

• val w = sqrt(g/R)

• val T = (2 * Pi) / w



Physical Units as Types
Part 4

Suppose you want to use the unit feet in addition to the SI units. 
How can you extend your type system to accommodate for this? 

(Assume that 1m = 3.28084 feet.)


