
Exercises on Grammars

1. Consider the following grammar:

S -> (L) | a

L -> L , S | S

• Is this grammar ambiguous ?

• Is this grammar LL(1) ?

• Compute the First and Follow sets for the new
grammar.

• Construct the parsing table for the LL(1) parser

Finding an LL(1) grammar

• No procedural way ! Practice …

• But there are some recommended practices that
generally help in finding one.

• Eg. try to eliminate left recursion.

– There is a procedure for this but you don’t have to
faithfully follow the entire approach.

– Just think of what left recursion brings and what can be
done to eliminate them

Removing Left Recursion

S -> (L) | a

L -> L , S | S

• How does a derivation starting from ‘L’ look ?

• L => L , S

=> L , S , S

=>* L , S , … , S

=> S , … , S

• L -> L , S | S is equivalent to L -> S , L | S

S -> (L) | a

L -> S , L | S

Removing Left Recursion

• In general, L -> L 𝛼 | 𝛽1 | … | 𝛽𝑛
• L -> 𝛽1 Z | … | 𝛽𝑛 Z | 𝛽1 | … | 𝛽𝑛
• Z -> 𝛼 Z | 𝜖

• This will remove immediate left-recursion but only
when there are no epsilon productions in the
grammar

• Otherwise, we need to remove epsilon productions
which will be discussed along with CNF conversion

• Removing indirect recursion

S -> L a

L -> S a | b

Removing Left Recursion

• Order non-terminals Eg. (1) S , (2) L

• Enforce that if A -> B then A should precede B in the
ordering

• S -> L a and L -> b satisfy the constraint but L -> S a
doesn’t

• Inline the production of S in L -> S a

• We get, L -> L a a | b , Remove left recursion.

– Result: L -> b Z | b Z -> a a Z | 𝜖

• If inlining does not result in left recursive production
or doesn’t satisfy the constraints, inline again.

Example 1 [Cont.]

S -> (L) | a

L -> L , S | S

• After eliminating left recursion

S -> (L) | a

L -> S , L | S

• Is this LL(1) now ?

Example 1 [Cont.]

S -> (L) | a

L -> L , S | S

• After eliminating left recursion

S -> (L) | a

L -> S , L | S

• Is this LL(1) now ?

Left factorization

S -> (L) | a

L -> S , L | S

• Identify a common prefix and push the suffixes to a
new nonterminal.

S -> (L) | a

L -> S Z

Z -> , L | 𝜖

• Is this LL(1) now ? Yes

Exercise 1 - First and Follow sets
(with EOF)

Let’s compute first and follow sets after adding EOF to the end
of the start symbol productions

S -> (L) EOF | a EOF

L -> S Z

Z -> , L | 𝜖

• 𝐹𝑖𝑟𝑠𝑡 𝑆 ⊇ 𝐹𝑖𝑟𝑠𝑡 𝐿 ∪ 𝐹𝑖𝑟𝑠𝑡 𝑎 = { (, 𝑎}

• 𝐹𝑖𝑟𝑠𝑡 𝐿 ⊇ 𝐹𝑖𝑟𝑠𝑡 𝑆 𝑍 = 𝐹𝑖𝑟𝑠𝑡(𝑆)

• 𝐹𝑖𝑟𝑠𝑡 𝑍 ⊇ 𝐹𝑖𝑟𝑠𝑡 , 𝐿 = { , }

• 𝐹𝑜𝑙𝑙𝑜𝑤 𝑆 ⊇ 𝐹𝑜𝑙𝑙𝑜𝑤 𝐿 ∪ 𝐹𝑜𝑙𝑙𝑜𝑤 𝑍

• 𝐹𝑜𝑙𝑙𝑜𝑤 𝐿 ⊇ } ∪ 𝐹𝑜𝑙𝑙𝑜𝑤(𝑍)

• 𝐹𝑜𝑙𝑙𝑜𝑤 𝑍 ⊇ 𝐹𝑜𝑙𝑙𝑜𝑤 𝐿

First and Follow sets [Cont.]

S -> (L) EOF | a EOF

L -> S Z

Z -> , L | 𝜖

• Solution to the above constraints:
– 𝐹𝑖𝑟𝑠𝑡 𝑆 = 𝐹𝑖𝑟𝑠𝑡 𝐿 = { (, 𝑎}

– 𝐹𝑖𝑟𝑠𝑡 𝑍 = { , }

– 𝐹𝑜𝑙𝑙𝑜𝑤 𝑆 = 𝐹𝑜𝑙𝑙𝑜𝑤 𝐿 = 𝐹𝑜𝑙𝑙𝑜𝑤 𝑍 = }

• Moreover, Z is Nullable

LL(1) parsing table

a () , EOF

S 2 1 Error Error Error

L 3 3 Error Error Error

Z Error Error 5 4 Error

(1) S -> (L)

(2) S -> a

(3) L -> S Z

(4) Z -> , L

(5) Z -> 𝜖

Exercise 2

Consider a grammar for expressions where the
multiplication sign is optional.

ex ::= ex + ex | ex * ex | ex ex |ID

• Find an LL(1) grammar recognizing the same
language

• Create the LL(1) parsing table.

Exercise 2 – Solution

• First let’s make the grammar unambiguous by
associating precedence with operators

• In the process we also made sure that the grammar
does not have left recursion

• ex ::= S + ex | S

• S ::= ID * S | ID S | ID

• Left factorization:

• ex ::= S Z

• Z ::= + ex | 𝜖

• S ::= ID Z2

• Z2 ::= * S | S | 𝜖

Exercise 2 – LL(1) parsing table

• ex ::= S Z EOF

• Z ::= + ex | 𝜖

• S ::= ID Z2

• Z2 ::= * S | S | 𝜖

• First let’s compute first and follow sets after adding
EOF to the end of the start symbol productions

– First(ex) = First(S) = { ID }

– First(Z) = { + } First(Z2) = { * , ID }

– Follow(ex) = Follow(Z) = { EOF }

– Follow(S) = Follow(Z2) = { EOF, + }

• Z and Z2 are nullable

LL(1) parsing table

1. ex ::= S Z

2. Z ::= + ex

3. Z ::= 𝜖

4. S ::= ID Z2

5. Z2 ::= * S

6. Z2 ::= S

7. Z2 ::= 𝜖

ID + * EOF

ex 1 Error Error Error

Z Error 2 Error 3

S 4 Error Error Error

Z2 6 7 5 7

Exercise 3

Balanced Parentheses over { (, [}

S ::= (S)| [S] | S S | 𝜖

• Find an LL(1) grammar recognizing the language

Exercise 3 - Solution

• S ::= (S)| [S] | S S | 𝜖

• ‘S’ produces epsilon. Hence, we need to first
eliminate epsilon (discussed in lecturecise 11) and
then remove left recursion from S ::= S S

• Instead, let’s apply the same logic as removing left
recursion but without performing all the steps.

• The role of the production S ::= S S is to produce a
sequence of S that begin with either (S) or [S]. i.e,

– (S) S S …. S

– [S] S S……. S

Exercise 3 - Solution

• Each of the successive S ’es can rewrite to either (S)
or [S]. That is, in essence S ::= S S produces
sequences given by the regular expression ((S) | [S
]) *

– E.g (S) (S) [S] (S) … is one such sequence

• The same effect can be achieved by the right
recursive rules

– S ::= (S) S | [S] S | 𝜖

• The above grammar is LL(1)

Exercise 4

Prove that every LL(1) grammar is unambiguous.

Solution to Exercise 4

Intuition:

Every production of a non-terminal belonging to an LL(1)
grammar generates a set of strings that is completely disjoint
from the other alternatives because of the following two
reasons:

(a) For every nonterminal, the first sets of every alternative are
disjoint which implies that they produce disjoint non-empty
strings

(b) There is at most one production for a non-terminal that can
produce an empty string

Formal proof is presented in the next slide

Solution to Exercise 4 [Cont.]
Claim : Every string w derivable from every non-terminal N has a
unique left most derivation.

• Proof by contradiction: Let D1: 𝑁 ⇒∗ 𝑤 and D2: 𝑁 ⇒∗ 𝑤 be two
derivations for w

• 𝐷1 and 𝐷2 should diverge at some point. That is there exists a step
at which a non-terminal expanded to different alternatives in the
derivations.

• Let 𝑥 we be prefix of 𝑤 that is derived just before the point where
𝐷1 and 𝐷2 diverge. That is

– 𝐷1: 𝑁 ⇒∗ 𝑥𝐴𝛼 ⇒ 𝑥𝛽𝛼 ⇒∗ 𝑤

– 𝐷2: 𝑁 ⇒∗ 𝑥𝐴𝛼 ⇒ 𝑥𝛾𝛼 ⇒∗ 𝑤 ,

• where A is a non-terminal, and 𝛼, 𝛽, 𝛾 are sequence of terminals
and non-terminals, and 𝛽 ≠ 𝛾

• If 𝑥 = 𝑤 then 𝛽𝛼 ⇒∗ 𝜖 and 𝛾𝛼 ⇒∗ 𝜖. Hence, there are two nullable
alternatives for A which is a contradiction

Solution to Exercise 4 [Cont.]
• Therefore, say |𝑥| < 𝑤 . This implies that the next input character is

𝑤|𝑥|+1 = 𝑎 (𝑠𝑎𝑦)

• Informally this means that both 𝐴 → 𝛾 and 𝐴 → 𝛽 are applicable on
seeing the input character 𝑎 which contradicts the LL(1) property.

• Formally, given 𝑎 ∈ 𝑓𝑖𝑟𝑠𝑡 𝛽𝛼 and 𝑎 ∈ 𝑓𝑖𝑟𝑠𝑡(𝛾𝛼)

1. If both 𝛽 and 𝛾 reduce to empty string (𝜖) in the derivations 𝐷1 and 𝐷2
then there are two nullable productions for A, which is a contradiction

2. If one of 𝛽 and 𝛾 reduce to empty string and other doesn’t
– Let 𝛽 ⇒∗ 𝜖 and 𝛾 derive a non-empty string

– Since 𝑎 ∈ 𝑓𝑖𝑟𝑠𝑡 𝛾𝛼 and 𝛾 derives non-empty string, 𝑎 ∈ 𝑓𝑖𝑟𝑠𝑡 𝛾 , which also
implies that 𝑎 ∈ 𝑓𝑖𝑟𝑠𝑡(𝐴)

– Since 𝑎 ∈ 𝑓𝑖𝑟𝑠𝑡(𝛽𝛼) and 𝛽 derives empty string, 𝑎 ∈ 𝑓𝑖𝑟𝑠𝑡(𝛼)

– Since 𝑁 ⇒∗ 𝑥𝐴𝛼, 𝑓𝑖𝑟𝑠𝑡 𝛼 ⊆ 𝑓𝑜𝑙𝑙𝑜𝑤(𝐴) . Hence, 𝑎 ∈ 𝑓𝑜𝑙𝑙𝑜𝑤(𝐴)

– Thus, 𝑎 ∈ 𝑓𝑜𝑙𝑙𝑜𝑤 𝐴 ∩ 𝑓𝑖𝑟𝑠𝑡 𝐴 and 𝐴 is nullable, which contradicts LL(1) property

3. Finally, if both 𝛽 and 𝛾 derive non-empty strings then 𝑎 ∈ 𝑓𝑖𝑟𝑠𝑡 𝛽 ∩
𝑓𝑖𝑟𝑠𝑡 𝛾 again contradicting LL(1) property

Corollary of the proof

• The preceding proof not just proves that every string has a
unique left most derivation in a LL(1) grammar but also
proves the following:

• If two strings u and v share a common prefix ‘x’ , then the
derivations of u and v cannot diverge before generating the
prefix ‘x’.

• That is the derivations of u and v should be of the form:

– 𝑆 ⇒∗ 𝑥 𝛼 ⇒∗ 𝑢

– 𝑆 ⇒∗ 𝑥 𝛼 ⇒∗ 𝑣

Exercise 5

Say that a grammar has a cycle if there is a reachable,
productive non-terminal A such that A ⇒+A, i.e. it is
possible to derive the nonterminal A from A by a
nonempty sequence of production rules.

Show that if a grammar has a cycle, then it is not LL(1).

Solution to Exercise 5

• We proved before that LL(1) grammars are not ambiguous

• Consider a left most derivation D that contains A

• D: 𝑆 ⇒∗ 𝑥𝐴𝛽 ⇒∗ 𝑤
– Where, x is a (possibly empty) sequence of terminals and

– 𝛽 is a sentential form

– Such a derivation must exist as A is reachable (from the start symbol)
and also productive

• Using A ⇒+A, we can derive another derivation for 𝑤

• D′: 𝑆 ⇒∗ 𝑥𝐴𝛽 ⇒+ 𝑥𝐴𝛽 ⇒∗ 𝑤

• There exists two left most derivations and hence two parse
trees for w

• The grammar is ambiguous and hence cannot be LL(1)

Exercise 6

Show that the regular languages can be recognized
with LL(1) parsers. Describe a process that, given a
regular expression, constructs an LL(1) parser for it.

Solution for Exercise 6

• Let the DFA for the regular language be A ∶
(Σ, 𝑄, 𝑞0 , 𝛿, 𝐹)

• Define a grammar G: (N, T, P, S) where,

• N = 𝑆𝑖 1 ≤ 𝑖 ≤ 𝑄 }

• T = Σ

• S = 𝑆0

• 𝛿 𝑞𝑖 , 𝑎 = 𝑞𝑗 ⇒ 𝑆𝑖 → 𝑎 𝑆𝑗 ∈ 𝑃

• 𝑞𝑖 ∈ 𝐹 ⇒ 𝑆𝑖 → 𝜖 ∈ 𝑃

L(A) = L(G)

Exercise 7

Show that the language { 𝑎𝑛𝑏𝑚 | 𝑛 > 𝑚} cannot have
an LL(1) grammar ?

Note that the following grammar recognizes the
language but is not LL(1)

S -> a S | P

P -> a P b | a

This question interesting but is quite difficult. A proof
for this is provided in a separate pdf file in the lara wiki.

This is meant only as a supplementary material to
provide more insights into LL(1) grammars.

It is not essential to fully understand the proof of this
question.

