
Computer Language Processing
(Compiler Construction)

Staff:

• Viktor Kuncak – Lectures

• Etienne Kneuss – Labs

• Ravichandhran Kandhadai Madhavan – Exercises

http://lara.epfl.ch/cc
Drawing Hands

M.C. Escher, 1948

Computer Language Processing
Language can be

– Natural language (French, English, …)

– computer language (Java, Scala, C, SQL, …)

– Mathematical language: a set of strings

• Can represent both of the above

We can process the language: do something with
strings in the language

– manually: mathematical proof, literary criticism

– using computers: algorithms that work on strings

Computer language processing in this course:
processing computer languages using computers

Compilers

A typical compiler processes a general-purpose,
Turing-complete, language and translates it into
the form where it can be efficiently executed

– gcc and clang: map C into machine instructions

– Java compiler: Java source code into bytecodes
(.class files)

– Just-in-time (JIT) compiler inside the Java Virtual
Machine (JVM): translate .class files into machine
instructions (while running the program)

This is the focus of this class and the class project.

Example: javac

while (i < 10) {
System.out.println(j);
i = i + 1;
j = j + 2*i+1;

}

4: iload_1
5: bipush 10
7: if_icmpge 32
10: getstatic #2; //System.out
13: iload_2
14: invokevirtual #3; //println
17: iload_1
18: iconst_1
19: iadd
20: istore_1
21: iload_2
22: iconst_2
23: iload_1
24: imul
25: iadd
26: iconst_1
27: iadd
28: istore_2
29: goto 4
32: return

javac Test.java
 Test.class

javap –c Test

You will build
a compiler that
generates such
code

- from Java to Bytecode

…

…

Example: gcc

#include <stdio.h>
int main(void) {
int i = 0;
int j = 0;
while (i < 10) {
printf("%d\n", j);
i = i + 1;
j = j + 2*i+1;

}
}

jmp .L2
.L3: movl -8(%ebp), %eax

movl %eax, 4(%esp)
movl $.LC0, (%esp)
call printf
addl $1, -12(%ebp)
movl -12(%ebp), %eax
addl %eax, %eax
addl -8(%ebp), %eax
addl $1, %eax
movl %eax, -8(%ebp)

.L2:
cmpl $9, -12(%ebp)
jle .L3

gcc test.c –S
 test.s

- from C to Intel x86

Compiler
(scalac, gcc)

machine code
(e.g. x86, ARM, JVM)
efficient to execute

i=0
while (i < 10) {
a[i] = 7*i+3
i = i + 1 }

source code
(e.g. Scala, Java,C)
easy to write

mov R1,#0
mov R2,#40
mov R3,#3
jmp +12
mov (a+R1),R3
add R1, R1, #4
add R3, R3, #7
cmp R1, R2
blt -16

Compiler

Construction

i
=
0
LF

w
h
i
l
e

i
=
0

while
(
i
<

10
)

lexer

characters words trees

data-flow
graphs

parser

assign

while

i 0

+

*
3

7 i

assign
a[i]

<

i 10

code gen

optimizer

type
check

Compilers are Important

Source code (e.g. Scala, Java, C, C++, Python) –
designed to be easy for programmers to use

– should correspond to way programmers think

– help them be productive: avoid errors, write at a
higher level, use abstractions, interfaces

Target code (e.g. x86, arm, JVM, .NET) –
designed to efficiently run on hardware / VM

– fast, low-power, compact, low-level

Compilers bridge these two worlds, they are
essential for building complex software

A pioneering

compiler:

FORTRAN

(FORmula

TRANslator)

Turing Award

1977

Backus-Naur

Form - BNF

Challenges for Future

Can source code programs be wishes:

specification languages, math,

natural language phrases, diagrams,

other forms of communication closer

to engineers and users?

Can target code commands include not only

execution of commands on standard

microprocessors processors, but also

automatic design of new hardware devices,

and control of physical devices?

Can compilers bridge the gap between

wishes and commands, and help

humans make the right decisions?

Some of Topics You Learn in Course

• Develop a compiler for a Java-like language

– Write a compiler from start to end

– Generates Java Virtual Machine (JVM) code

(We provide you code stubs, libraries in Scala)

• Compiler generators – using and making them

• Analyze complex text

– Automata, regular expressions, grammars, parsing

• Automatically detecting errors in code

– name resolution, type checking, data-flow analysis

• Machine-like code generation

Potential Uses of Knowledge Gained
– understand how compilers work, use them better

– gain experience with building complex software

– build compiler for your next great language

– extend language with a new construct you need

– adapt existing compiler to new target platform
(e.g. embedded CPU or graphics processor)

– regular expression handling in editors, grep

– build an XML parsing library

– process complex input box in an application
(e.g. expression evaluator)

– parse simple natural language fragments

Schedule and Activities (6 credits)

• All activities take place in INM 202

– Mondays 10:15-12:00,

– Wednesday 8:15-10:00 and continuing to:

– Wednesday 10:15-12:00

• Lectures, Labs, Exercises

• At home

– Continue with programming the compiler

– Practice solving problems to prepare for quizzes

• If you need more help, email us:

– we will arrange additional meetings

http://plan.epfl.ch/?room=INM202

How We Compute Your Grade

The grade is based on a weighted average of:

– 50% : project (submit, explain if requested)

• submit through our wonderful online system

• do them in groups of 2, exceptionally 1 or 3

– 25% : quiz for the first part of the course

– 25% : quiz for the second part of the course

• will be on the last Wednesday of classes

Collaboration and Its Boundaries
• For clarification questions, discuss them in the

mailing list, which we monitor

• Work in groups of 2 for project

– everyone should know every part of code

– we may ask you to explain specific parts of code

• Do not copy lab solutions from other groups!

– we use code plagiarism detection tools

– we will check if you fully understand your code

• Do the quizzes individually

– You wouldn’t steal a handbag.

– You wouldn’t steal a car.

– You wouldn’t steal a compiler!

Your
Compiler

JVM
Code

i=0
while (i < 10) {
a[i] = 7*i+3
i = i + 1 }

source code
simplified Java-like
language

21: iload_2
22: iconst_2
23: iload_1
24: imul
25: iadd
26: iconst_1
27: iadd
28: istore_2

Your
Compiler

Construction

i
=
0
LF

w
h
i
l
e

i
=
0

while
(
i
<

10
)

lexer

characters words trees

parser

assign

while

i 0

+

*
3

7 i

assign
a[i]

<

i 10

code gen
type
check

Each two weeks you will add next phase
- keep same groups
- it is essential to not get behind schedule
- final addition to compiler is your choice!

EPFL Course Dependencies
• Theoretical Computer Science (CS-251)

– If have not taken it, check the book “Introduction
to the Theory of Computation” by Michael Sipser

• Knowledge of the Scala language (see web)

• Helpful general background

– Discrete structures (CS-150), Algorithms (CS-250)

• This course provides background for MSc:

– Advanced Compilers

– Synthesis Analysis & Verification

– Foundations of Software

Course Materials

Official Textbook:

Andrew W. Appel, Jens Palsberg:
Modern Compiler Implementation in Java
(2nd Edition). Cambridge University Press, 2002
We do not strictly follow it–understand, not copy

– program in Scala instead of Java

– use pattern matching instead of visitors

– hand-written parsers in the project
(instead of using a parser generator)

Lectures in course wiki: http://lara.epfl.ch/w/cc

http://lara.epfl.ch/w/cc

Additional Materials

• Compilers: Principles, Techniques, and Tools (2nd Edition) by
Alfred V. Aho, Monica S. Lam, Ravi Sethi, Jeffrey D. Ullman

– comprehensive

• Compiler Construction by Niklaus Wirth

– concise, has main ideas
“Niklaus Emil Wirth (born February 15, 1934) is a Swiss computer scientist, best
known for designing several programming languages, including Pascal, and for
pioneering several classic topics in software engineering. In 1984 he won
the Turing Award for developing a sequence of innovative computer languages.”

• Additional recent books (2011-2012):
– Aarne Ranta: Implementing Programming Languages

– H.Seidl, R.Wilhelm, S.Haack: Compiler Design (3 vols, Springer)

http://en.wikipedia.org/wiki/Switzerland
http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Programming_language
http://en.wikipedia.org/wiki/Pascal_(programming_language)
http://en.wikipedia.org/wiki/Software_engineering
http://en.wikipedia.org/wiki/Turing_Award

Describing the Syntax of Languages

Syntax (from Wikipedia)

...In linguistics, syntax (from Ancient Greek σύνταξις
"arrangement" from σύν - syn, "together", and τάξις -
táxis, "an ordering") is the study of the principles and
rules for constructing phrases and sentences in natural
languages.

...In computer science, the syntax of a programming
language is the set of rules that define the
combinations of symbols that are considered to be
correctly structured programs in that language.

http://en.wikipedia.org/wiki/Linguistics
http://en.wikipedia.org/wiki/Ancient_Greek
http://en.wiktionary.org/wiki/%CF%83%CF%8D%CE%BD%CF%84%CE%B1%CE%BE%CE%B9%CF%82
http://en.wikipedia.org/wiki/Sentence_(linguistics)
http://en.wikipedia.org/wiki/Natural_language
http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Programming_language
http://en.wikipedia.org/wiki/Computer_program

Describing Syntax: Why

• Goal: document precisely (a superset of)
meaningful programs (for users, implementors)

– Programs outside the superset: meaningless

– We say programs inside make syntactic sense

(They may still be ‘wrong’ in a deeper sense)

• Describing syntactically valid programs

– There exist arbitrarily long valid programs, we
cannot list all of them explicitly!

– Informal English descriptions are imprecise,
cannot use them as language reference

Describing Syntax: How

• Use theory of formal languages (from TCS)

– regular expressions & finite automata

– context-free grammars

• We can use such precise descriptions to

– document what each compiler should support

– manually derive compiler phases (lexer, parser)

– automatically construct these phases using
compiler generating tools

• We illustrate this through an example

While Language – Idea

• Small language used to illustrate key concepts

• Simpler than the language for which you
implement your compiler

• ‘while’ and ‘if’ are the control statements

– no procedures, no exceptions

• the only variables are of ‘int’ type

– no variable declarations, they are initially zero

– no objects, pointers, arrays

While Language – Example Programs

x = 13;
while (x > 1) {
println("x=", x);
if (x % 2 == 0) {
x = x / 2;

} else {
x = 3 * x + 1;

}
}

Does the program terminate

for every initial value of x?

(Collatz conjecture - open)

while (i < 100) {
j = i + 1;
while (j < 100) {
println(“ “,i);
println(“,”,j);
j = j + 1;

}
i = i + 1;

}

Nested loop

Even though it is simple, while is Turing-complete.

Reasons for Unbounded Program Length

while (i < 100) {
j = i + 5*(j + 2*(k + 7*(j+k) + i));
while (293847329 > j) {

while (k < 100) {
someName42a = someName42a + k;
k = k + i + j;
println(“Nice number”, k)

}
}

}

constants of
any length

variable names
of any length

nesting of
expressions

nesting of
statements

(words - tokens)

String constants
of any length

Tokens (Words) of the While Language

Ident ::=
letter (letter | digit)*

integerConst ::=
digit digit*

stringConst ::=
“ AnySymbolExceptQuote* “

keywords
if else while println

special symbols
() && < == + - * / % ! - { } ; ,

letter ::= a | b | c | … | z | A | B | C | … | Z
digit ::= 0 | 1 | … | 8 | 9

regular
expressions

Double Floating Point Constants

Different rules in different languages

1) digit digit* [.] [digit digit*]

2) digit digit* [. digit digit *]

3) digit* . digit digit*

4) digit digit* . digit digit*

while (i < 100) {
j = i + 5*(j + 2*(k + 7*(j+k) + i));
while (293847329 > j) {

while (k < 100) {
someName42a = someName42a + k;
k = k + i + j;
println(“Nice number”, k)

}
}

}

letter (letter | digit)*

Identifiers

Id3 = 0
while (id3 < 10) {
println(“”,id3);
id3 = id3 + 1 }

source code

Compiler

Construction

i
d
3

=

0
LF

w

id3
=
0

while
(

id3
<

10
)

lexer

characters words
(tokens)

trees

parser

assign

while

i 0

+

*
3

7 i

assign
a[i]

<

i 10

Lexer is specified using regular expressions.
Groups characters into tokens
and classifies them into token classes.

More Reasons for Unbounded Length

while (i < 100) {
j = i + 5*(j + 2*(k + 7*(j+k) + i));
while (293847329847 > j) {

while (k < 100) {
someName42a = someName42a + k;
k = k + i + j;
println(“Nice number”, k)

}
}

}

constants of
any length

variable names
of any length

nesting of
expressions

nesting of
statements

(words - tokens) (sentences)

String constants
of any length

Sentences of the While Language

We describe sentences using context-free grammar
(Backus-Naur form). Terminal symbols are tokens (words)

program ::= statmt*

statmt ::= println(stringConst , ident)

| ident = expr

| if (expr) statmt (else statmt)?

| while (expr) statmt
| { statmt* }

expr ::= intLiteral | ident

| expr (&& | < | == | + | - | * | / | %) expr
| ! expr | - expr

nesting of
statements

nesting of
expressions

While Language without Nested Loops

statmt ::= println(stringConst , ident)

| ident = expr

| if (expr) statmt (else statmt)?

| while (expr) statmtww
| { statmt* }

statmtww ::= println(stringConst , ident)

| ident = expr

| if (expr) statmtww (else statmtww)?

| { statmtww* }

Id3 = 0
while (id3 < 10) {
println(“”,id3);
id3 = id3 + 1 }

source code

Compiler

Construction

i
d
3

=

0
LF

w

id3
=
0

while
(

id3
<

10
)

lexer

characters words
(tokens)

trees

parser

assign

while

i 0

+

*
3

7 i

assign
a[i]

<

i 10

regular expressions
for tokens

context-free
grammar

Abstract Syntax - Trees
To get abstract syntax (trees, cases classes),
start from context-free grammar for tokens, then

– remove punctuation characters

– interpret rules as tree descriptions, not string descriptions

statmt ::= println(stringConst , ident) PRINT(String,ident)

| ident = expr ASSIGN(ident,expr)

| if (expr) statmt (else statmt)? IF(expr,stmt,Option[statmt])

| while (expr) statmt WHILE(expr,statmt)

| { statmt* } BLOCK(List[statmt])

abstract class statmt
case class PRINT(id:ident) extends statmt
case class ASSIGN(id:ident, e:expr) extends statmt
case class IF(e:expr, s1:statmt, s2:Option[statmt])
extends statmt ...

concrete syntax abstract syntax

Scala trees for this
abstract syntax

ocaml vs Haskell vs Scala

ocaml:

type tree = Leaf | Node of tree * int * tree

Haskell:

data Tree = Leaf | Branch Tree Int Tree

Scala:

abstract class Tree
case object Leaf extends Tree
case class Node(left:Tree,x:Int,right:Tree)

extends Tree

Example of Parsing

res = 14 + arg * 3

Lexer:

res = 14 + arg * 3

Parser:

ASSIGN(res,

PLUS(CONST(14),

TIMES(VAR(arg),CONST(3))))

Code generator then “prints” this tree into instructions.

:=

+

*

res

arg 3

14

Interpreters

What is an interpreter?

• Interpreter is a simpler way to implement a
language

• Usually it is easier to build than a compiler

• It can be used as one way to define the
meaning of programs: programs should
compute whatever the interpreter returns

• Your first lab: build an interpreter

– the front end (lexer and parser) will be given to you
as a class file

Your
Compiler

JVM
Code

i=0
while (i < 10) {
a[i] = 7*i+3
i = i + 1 }

source code
simplified Java-like
language

result of executing
the program

Interpreter
Construction

(first lab)

i
=
0
LF

w
h
i
l
e

i
=
0

while
(
i
<

10
)

lexer

characters words trees

parser

assign

while

i 0

+

*
3

7 i

assign
a[i]

<

i 10

Differences with the compiler
• does not generate code
• waits for program input, evaluates

program tree, computes the result

interpreter

program inputs

Reminder about Formal Languages

Languages Formally

• A word is a finite, possibly empty, sequence of
elements from some set Σ

Σ – alphabet, Σ* - set of all words over Σ

• For lexer: characters; for parser: token classes

• uv denotes concatenation of words u and v

• By a language we mean a subset of Σ*

– union, intersection, complement wrt. Σ*

L1 L2 = { u1 u2 | u1 in L1 , u2 in L2 }
L0 = {ε}
Lk+1 = L Lk L* = Uk Lk (Kleene star)

Are there finitely many tokens?

• There are finitely many token classes

– identifier

– string

– {

– }

– (

... (many, but finitely many)

There is unbounded number of instances of token
classes identifier and string
When we discuss grammars, we work with token classes.

Examples of Languages

Σ = {a,b}

Σ* = {ε, a, b, aa, ab, ba, bb, aaa, aab, aba, ... }

Examples of two languages, subsets of Σ* :

L1 = {a, bb, ab} (finite language, three words)

L2 = {ab, abab, ababab, ... }
= { (ab)n | n ≥ 0 } (infinite language)

Examples of Operations

L = {a,ab}

L L = { aa, aab, aba, abab }

L* = { a, ab, aa, aab, aba, abab, aaa, ... }

(is bb inside L* ?)

= { w | immediately before each b there is a }

