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1 Exercise 5

A grammar has a cycle if there is a reachable and productive non-terminal A such that
A⇒+ A, i.e. it is possible to derive the non-terminal A from A by a nonempty sequence
of production rules.

Show that if a grammar has a cycle, then it is not LL(1).

1.1 Solution

We know that LL(1) grammars are not ambiguous. Consider a left most derivation
D that contains A. Let D be of the form S ⇒∗ xAβ ⇒∗ w, where x is a (possibly
empty) sequence of terminals and β is a sentential form (sequence of terminals and non-
terminals). Note that such a derivation must exist as A is both reachable (from the start
symbol) and productive . Since A⇒+ A, we can construct another left most derivation
by replacing A by the chain A⇒+ A. Formally, S ⇒∗ xAβ ⇒+ xAβ ⇒∗ w. Therefore,
there exists two different left most derivation and hence two different parse trees for w.
This implies that the grammar is ambiguous and hence not LL(1).

2 Exercise 7

This exercise is quite difficult. It is completely optional for you to read and understand
the following proof. We would certainly not be asking questions as difficult as the
following in the quiz.

Show that the languageL = {albm | l > m} which is defined by the grammar

S → aS | P
P → aPb | a

cannot have a LL(1) grammar.

2.1 Solution

Say we have an LL(1) grammar G recognizing L. Without loss of generality, assume
that G only has reachable and productive non-terminals. Since the language is infinite,
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the grammar has at least one “recursive” non-terminal N , i.e, N ⇒∗ αNβ, where α
and β are sentential forms which is a (possibly empty) sequence of terminals and non-
terminals. Moreover, there exists a recursive non-terminal A such that A ⇒∗ αAβ and
α⇒∗ ak for some k > 0. Otherwise, it is easy to show that the number of a’s has to be
bounded in every string generated by the grammar.

Case (i): β is empty i.e, A⇒∗ αA, or β only derives empty string i.e, β ⇒∗ w implies
w = ε.

Consider a derivation D of a string albm, l > 0 that uses the production A⇒ αAβ.
Note that there has to be one such derivation since A is a reachable non-terminal. Let
ρ be the prefix of the derivation before the “last application” of A⇒ αAβ. That is, let
D be S ⇒∗ ρAδ ⇒ ραAβδ ⇒∗ albm, where there is no other application of A ⇒ αAβ
after the one shown. By assumption, β is empty or it can derive only empty string.
Therefore, D is of the form S ⇒∗ ραAδ ⇒∗ albm.

We know that α derives a non-empty sequence of a’s i.e, α ⇒ ak, k > 0. Hence, ρ
can only derive (a possibly empty) sequence of a’s. Otherwise, if ρ ⇒∗ albi, i > 0 then
we can derive a string that does not belong to the language as ρα⇒∗ albiak, where i, k
are positive integers. Therefore, D has to be of the form S ⇒∗ ajAδ ⇒∗ albm, j > 0.
We now show that j = l. If j < l then the derivation D would again have to apply
the production A ⇒ αAβ, since it is the only alternative of A that can start with a
(note that G is LL(1)). But, by assumption, ρ is the prefix before the last application
of A⇒ αAβ. Hence, there could be no more application of the production beyond aj in
the derivation D. Therefore j < l is not possible. Hence, S ⇒∗ alAδ ⇒∗ albm.

Now, consider the (partial) derivation D′ : S ⇒∗ alAδ ⇒ alαAδ ⇒∗ al+kAδ, k > 0.
(The sentential form β is omitted in D′ as it either empty or it can only derive ε). Since
al+kbl ∈ L and the grammar G is LL(1), al+kbl has to be derivable through al+kAδ.
That is, S ⇒∗ al+kAδ ⇒∗ al+kbl. Hence, Aδ ⇒∗ bl.

Using this fact in derivation D, we get S ⇒∗ alAδ ⇒∗ albl. But, albl /∈ L (note that
l > 0). Hence, when β is empty or when it can only derive ε, we obtain a contradiction.

Case (ii): β is non-empty and it derives a non-empty string. That is, β = N1N2 · · ·Nn

and β ⇒∗ w s.t. |w| > 0.
Claim 1: Both A and β are nullable i.e, β ⇒∗ ε and A⇒∗ ε.
As in the previous case, consider a derivation D of a string albm that uses the

production A ⇒ αAβ. By the same argument presented earlier, we can deduce that D
has to be of the form S ⇒∗ alAβδ ⇒∗ albm. Since al ∈ L and the grammar G is LL(1),
al has to be derivable through alAβδ. Therefore, S ⇒∗ alAβδ ⇒∗ al. This implies that
both A and β are nullable.

Claim 2: first(β) = {b}.
By the above claim, A is nullable. If a ∈ first(β) then first(A) ∩ follow(A) 6= ∅

which violates the LL(1) property. Therefore, first(β) ⊆ {b}. By assumption, β can
derive a non-empty string. Hence, first(β) 6= ∅. Therefore, first(β) = {b}.

Now, let’s come back to the proof of the main statement. Given β = N1N2 · · ·Nn.
Since β is nullable, each of the Ni’s are nullable. By the definition of follow, follow(A) ⊆
follow(Ni) for each 1 ≤ i ≤ n as every Ni is nullable. Hence, b ∈ follow(Ni) for all
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1 ≤ i ≤ n as b ∈ follow(A). Since b ∈ first(β), there exists a j such that b ∈ first(Nj).
Therefore, first(Nj) ∩ follow(Nj) = {b} and Nj is nullable. This violates the LL(1)
property and hence is a contradiction.

Since we get a contradiction in both cases where β is empty and is non-empty, there
cannot exist an LL(1) grammar G for L
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