
Exercise 1

Consider a language with the following tokens and token classes:

ID ::= letter (letter|digit)* 
LT ::= "<" 
GT ::= ">" 
shiftL ::= "<<" 
shiftR ::= ">>" 
dot ::= "." 
LP ::= "(" 
RP ::= ")"

Give a sequence of tokens for the following character sequence, 
applying the longest match rule:

(List<List<Int>>)(myL).headhead

Note that the input sequence contains no space character



Exercise 2

Find a regular expression that generates all alternating 
sequences of 0 and 1 with arbitrary length (including 
lengths zero, one, two, ...). For example, the 
alternating sequences of length one are 0 and 1, length 
two are 01 and 10, length three are 010 and 101. Note 
that no two adjacent character can be the same in an 
alternating sequence.



Exercise 3
Construct a DFA (deterministic finite-state automaton) 
for the language L of well-nested parenthesis of nesting 
depth at most 3. For example, 
ε, ()(), (()(())) and (()())()() should be in L, 
but not (((()))) nor (()(()(()))), nor ())) .



Exercise 4
• Find two equivalent states in the automaton, and merge them to produce a 

smaller automaton that recognizes the same language. Repeat until there 
are no longer equivalent states.

• Recall that the general algorithm for minimizing finite automata works in 
reverse. First, find all pairs of inequivalent states. States X, Y are inequivalent
if X is final and Y is not, or (by iteration) if and and X’ and Y’ are 
inequivalent. After this iteration ceases to find new pairs of inequivalent
states, then X, Y are equivalent, if they are not inequivalent.



Exercise 5
Let tail be a function that returns all the symbols of a string except 
the last one. For example

tail(mama)=mam
tail is undefined for an empty string. If L1  A*, then TAIL(L1)
applies the function to all non-empty words in L1, ignoring  if it is 
in L1: TAIL(L1) = { v A* |  a  A. va  L1}

TAIL({aba,aaaa,bb, }) = {ab,aaa,b}
L(r) denotes the language of a regular expression r. Then
TAIL(L(abba|ba*|ab*)) = L(ba*|ab*|)

Tasks:

• Prove that if language L1 is regular, then so is TAIL(L1)

• Give an algorithm that, given a regular expression r for L1, 
computes a regular expression rtail(r) for language TAIL(L1)



Exercise 6. Given NFA A, find first(L(A))

• Compute the set of first symbols of words accepted 
by the following non-deterministic finite state 
machine with epsilon transitions:

• Describe an algorithm that solves this problem given 
a given NFA



More Questions

• Find automaton or regular expression for:

– Any sequence of open and closed parentheses of 
even length?

– as many digits  before as after decimal point?

– Sequence of balanced parentheses
( ( () )  ()) - balanced
( ) ) ( ( )  - not balanced

– Comment as a sequence of space,LF,TAB, and 
comments from // until LF

– Nested comments like     /*  ... /*   */  … */



Automaton that Claims to Recognize
{ anbn | n >= 0 }

Make the automaton deterministic

Let the resulting DFA have K states, |Q|=K

Feed it a, aa, aaa, …. Let qi be state after reading ai

q0 , q1 , q2 , ... , qK

This sequence has length K+1 -> a state must repeat
qi = qi+p p > 0

Then the automaton should accept ai+pbi+p .

But then it must also accept

ai bi+p

because it is in state after reading ai as after ai+p.

So it does not accept the given language.



Limitations of Regular Languages

• Every automaton can be made deterministic

• Automaton has finite memory, cannot count

• Deterministic automaton from a given state 
behaves always the same

• If a string is too long, deterministic automaton 
will repeat its behavior



Pumping Lemma

If L is a regular language, then there exists a 
positive integer p (the pumping length) such 
that every string s  L for which |s| ≥ p, can be 
partitioned into three pieces, s = x y z, such that

• |y| > 0

• |xy| ≤ p

• ∀i ≥ 0. xyiz  L

Let’s try again: { anbn | n >= 0 }



Automata are Limited

Let us use grammars!



Context Free Grammar for anbn

S ::= 
S ::= a S b

Example of a derivation

S  => aSb =>  a aSb b =>  aa aSb bb => aaabbb

Derivation tree: leaves give us result



Context-Free Grammars

G = (A, N, S, R)

• A - terminals (alphabet for generated words w  A*)

• N - non-terminals – symbols with recursive definitions

• Grammar rules in R are pairs, written ss
n ::= v where

n  N is a non-terminal
v  (A U N)* - sequence of terminals and non-terminals

A derivation in G starts from the starting symbol S

• Each step replaces a non-terminal with one of its right 
hand sides

Example from before:  G = ({a,b}, {S}, S, {S::= , S::=aSB}) 



Parse Tree
Given a grammar G = (A, N, S, R), t is a parse tree of G (isParseTree) 
if t is a node-labelled tree with ordered children that satisfies:

• root is labeled by S 

• leaves are labelled by elements of A

• each non-leaf node is labelled by an element of N

• for each non-leaf node labelled by n whose children are labelled 
by p1…pn, we have a rule (n::= p1…pn)  R

Yield of a parse tree t is the unique word in A* obtained by reading 
the leaves of t from left to right

Language of a grammar G =
words of all yields of parse trees of G

L(G) = {yield(t) | isParseTree(G,t)}

isParseTree - easy to check

Harder: know if a word has a parse tree



Grammar Derivation

A derivation for G is any sequence of words pi (A U N)*,whose:

• first word is S

• each subsequent word is obtained from the previous one by 
replacing one of its letters by right-hand side of a rule in R :
pi      = unv ,   (n::=q)R,    
pi+1 = uqv

• Last word has only letters from A

Each parse tree of a grammar has one or more derivations, 
which result in expanding tree gradually from S

• Different orders of expanding non-terminals may generate 
the same tree



Example: Parse Tree vs Derivation

Consider this grammar G = ({a,b}, {S,P,Q}, S, R) where R is:

S ::= PQ
P ::= a
P ::= aP
Q ::= aQb
Q ::= 

Show a derivation tree for  aaaabb
Show at least two derivations that correspond to that tree.



Balanced Parentheses Grammar

Consider the language L consisting of precisely those 
words consisting of parentheses “(“ and “)” that are 
balanced (each parenthesis has the matching one)

• Example sequence of parentheses

( ( () )  ()) - balanced, belongs to the language

( ) ) ( ( )  - not balanced, does not belong

Exercise: give the grammar and example derivation for 
first language.



Balanced Parentheses Grammar



Proving Grammar Defines a Language

Grammar G: S ::= ,  S ::= (S)S

defines language L(G)

Theorem: L(G) = Lb

where Lb = { w | for every pair u,v of words such

that uv=w, the number of ( symbols in u
is greater or equal than the number of )   

symbols in u . These numbers are equal in w }



L(G)  Lb : If w  L(G), then it has a parse tree. We show wLb by 
induction on size of the parse tree deriving w using G.

If tree has one node, it is "", and ""Lb , so we are done.

Suppose property holds for trees up size n. Consider tree of size 
n. The root of the tree is given by rule (S)S . The derivation of 
sub-trees for the first and second S belong to Lb by induction 
hypothesis. The derived word w is of the form  (p)q where 
p,q Lb. Let us check if (p)q Lb. Let (p)q = uv and count the 
number of ( and ) in u. If u then it satisfies the property. If it is 
shorter than |p|+1 then it has at least one more ( than ). 
Otherwise it is of the form (p)q1 where q1 is a prefix of q. 
Because the parentheses balance out in p and thus in (p), the 
difference in the number of ( and ) is equal to the one in q1

which is a prefix of q so it satisfies the property. Thus u satisfies 
the property as well.



Lb L(G): If w  Lb, we need to show that it has a parse tree. We do 
so by induction on |w|. If w="" then it has a tree of size one (only 
root). Otherwise, suppose all words of length <n have parse tree 
using G. Let w Lb and |w|=n>0. (Please refer to the figure counting 
the difference between the number of ( and ). We split w in the 
following way: let p1 be the shortest non-empty prefix of w such that 
the number of ( equals to the number of ). Such prefix always exists 
and is non-empty, but could be equal to w itself. Note that it must 
be that p1 = (p) for some p because p1 is a prefix of a word in Lb , so 
the first symbol must be ( and, because the final counts are equal, 
the last symbol must be ). Therefore, w = (p)q for some shorter 
words p,q. Because we chose p to be the shortest, prefixes of (p 
always have at least one more (. Therefore, prefixes of p always 
have at greater or equal number of (, so p is in Lb. Next, for prefixes 
of the form (p)v the difference between ( and ) equals this 
difference in v itself, since (p) is balanced. Thus, v has at least as 
many ( as ). We have thus shown that w is of the form (p)q where 
p,q are in Lb. By IH p,q have parse trees, so there is parse tree for w.



Exercise: Grammar Equivalence

Show that each string that can be derived by 
grammar G1

B ::=  | ( B ) | B B
can also be derived by grammar G2

B ::=  | ( B ) B

and vice versa. In other words, L(G1) = L(G2)

Remark: there is no algorithm to check for equivalence 
of arbitrary grammars. We must be clever.



Regular Languages and Grammars

Exercise: give grammar describing the same 
language as this regular expression:

(a|b) (ab)*b*



Translating Regular Expression 
into a Grammar

• Suppose we first allow regular expression 
operators * and | within grammars

• Then R becomes simply

S ::= R

• Then give rules to remove *, | by introducing 
new non-terminal symbols



Eliminating Additional Notation

• Alternatives

s ::= P | Q    becomes s ::= P
s ::= Q

• Parenthesis notation – introduce symbol

expr (&& | < | == | + | - | * | / | % ) expr

• Kleene star

{ statmt* }

• Optional parts

if ( expr ) statmt (else statmt)?



Grammars for Natural Language
Statement = Sentence "."
Sentence ::= Simple | Belief
Simple ::= Person liking Person 
liking ::= "likes" | "does" "not" "like" 
Person ::= "Barack" | "Helga" | "John" | "Snoopy" 

Belief ::= Person believing "that" Sentence but 

believing ::= "believes" | "does" "not" "believe" 

but ::= "" | "," "but" Sentence

Exercise: draw the derivation tree for:

John does not believe that 
Barack believes that Helga likes Snoopy, 

but Snoopy believes that Helga likes Barack.

 can also be used to 
automatically generate essays



While Language Syntax

This syntax is given by a context-free grammar:

program ::= statmt* 

statmt ::= println( stringConst , ident )

| ident = expr

| if ( expr ) statmt (else statmt)?

| while ( expr ) statmt
| { statmt* } 

expr ::= intLiteral | ident

| expr (&& | < | == | + | - | * | / | % ) expr
| ! expr | - expr



Compiler        
(scalac, gcc)                  

Id3 = 0
while (id3 < 10) {
println(“”,id3);
id3 = id3 + 1 }

source code
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Recursive Descent Parsing



Recursive Descent is Decent

descent = a movement downward

decent = adequate, good enough

Recursive descent is a decent parsing technique
– can be easily implemented manually based on the 

grammar (which may require transformation)

– efficient (linear) in the size of the token sequence

Correspondence between grammar and code
– concatenation  ; 

– alternative (|)  if

– repetition (*)  while

– nonterminal  recursive procedure



A Rule of While Language Syntax

statmt ::= 

println ( stringConst , ident )

| ident = expr

| if ( expr ) statmt (else statmt)?

| while ( expr ) statmt
| { statmt* } 



Parser for the statmt (rule -> code)
def skip(t : Token) = if (lexer.token == t) lexer.next

else error(“Expected”+ t)
// statmt ::= 
def statmt = {

// println ( stringConst , ident )
if (lexer.token == Println) { lexer.next;

skip(openParen); skip(stringConst); skip(comma);
skip(identifier); skip(closedParen)

// | ident = expr
} else if (lexer.token == Ident) { lexer.next;

skip(equality); expr
// | if ( expr ) statmt (else statmt)?

} else if (lexer.token == ifKeyword) { lexer.next;
skip(openParen); expr; skip(closedParen); statmt;
if (lexer.token == elseKeyword) { lexer.next; statmt }

// | while ( expr ) statmt



Continuing Parser for the Rule

// | while ( expr ) statmt

// | { statmt* } 

} else if (lexer.token == whileKeyword) { lexer.next;

skip(openParen); expr; skip(closedParen); statmt

} else if (lexer.token == openBrace) { lexer.next;

while (isFirstOfStatmt) { statmt }

skip(closedBrace)

} else { error(“Unknown statement, found token ” + 
lexer.token)  }



First Symbols for Non-terminals

statmt ::= println ( stringConst , ident )

| ident = expr

| if ( expr ) statmt (else statmt)?

| while ( expr ) statmt
| { statmt* } 

• Consider a grammar G and non-terminal N

LG(N) = { set of strings that N can derive }

e.g. L(statmt) – all statements of while language

first(N) = { a | aw in LG(N), a – terminal,  w – string of terminals}

first(statmt) = { println, ident, if, while, {  }

(we will see how to compute first in general)



Compiler        
(scalac, gcc)                  

Id3 = 0
while (id3 < 10) {
println(“”,id3);
id3 = id3 + 1 }

source code
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Parse Tree vs Abstract Syntax Tree (AST)

while (x > 0) x = x - 1

Pretty printer: takes abstract syntax tree (AST) and outputs the 
leaves of one possible (concrete) parse tree.

parse(prettyPrint(ast))   ast



Parse Tree vs Abstract Syntax Tree (AST)

• Each node in parse tree has children 
corresponding precisely to right-hand side of 
grammar rules

• Nodes in abstract syntax tree contain only 
useful information and usually omit e.g. the 
punctuation signs



Abstract Syntax Trees for Statements

statmt ::= println ( stringConst , ident )

| ident = expr

| if ( expr ) statmt (else statmt)?

| while ( expr ) statmt
| { statmt* } 

abstract class Statmt

case class PrintlnS(msg : String, var : Identifier) extends Statmt

case class Assignment(left : Identifier, right : Expr) extends Statmt

case class If(cond : Expr, trueBr : Statmt, 

falseBr : Option[Statmt]) extends Statmt

case class While(cond : Expr, body : Expr) extends Statmt

case class Block(sts : List[Statmt]) extends Statmt



Abstract Syntax Trees for Statements

statmt ::= println ( stringConst , ident )

| ident = expr

| if ( expr ) statmt (else statmt)?

| while ( expr ) statmt
| { statmt* } 

abstract class Statmt

case class PrintlnS(msg : String, var : Identifier) extends Statmt

case class Assignment(left : Identifier, right : Expr) extends Statmt

case class If(cond : Expr, trueBr : Statmt, 

falseBr : Option[Statmt]) extends Statmt

case class While(cond : Expr, body : Statmt) extends Statmt

case class Block(sts : List[Statmt]) extends Statmt



Our Parser Produced Nothing 
def skip(t : Token) : unit = if (lexer.token == t) lexer.next

else error(“Expected”+ t)
// statmt ::= 
def statmt : unit = {

// println ( stringConst , ident )
if (lexer.token == Println) { lexer.next;

skip(openParen); skip(stringConst); skip(comma);
skip(identifier); skip(closedParen)

// | ident = expr
} else if (lexer.token == Ident) { lexer.next;

skip(equality); expr



Parser Returning a Tree 
def expect(t : Token) : Token = if (lexer.token == t) { lexer.next;t}

else error(“Expected”+ t)
// statmt ::= 
def statmt : Statmt = {

// println ( stringConst , ident )
if (lexer.token == Println) { lexer.next;

skip(openParen); val s = getString(expect(stringConst));
skip(comma);
val id = getIdent(expect(identifier)); skip(closedParen)
PrintlnS(s, id)

// | ident = expr
} else if (lexer.token.class == Ident) { val lhs = getIdent(lexer.token)

lexer.next;
skip(equality); val e = expr
Assignment(lhs, e)



Constructing Tree for ‘if’
def expr : Expr = { … }

// statmt ::= 

def statmt : Statmt = {

…

// if ( expr ) statmt (else statmt)?

// case class If(cond : Expr, trueBr: Statmt, falseBr: Option[Statmt])

} else if (lexer.token == ifKeyword) { lexer.next;

skip(openParen); val c = expr; skip(closedParen); 

val trueBr = statmt

val elseBr = if (lexer.token == elseKeyword) { 

lexer.next; Some(statmt) } else None

If(c, trueBr, elseBr)   // made a tree node 

}



Task: Constructing Tree for ‘while’
def expr : Expr = { … }

// statmt ::= 

def statmt : Statmt = {

… 

// while ( expr ) statmt

// case class While(cond : Expr, body : Expr) extends Statmt

} else if (lexer.token == WhileKeyword) { 

} else



Here each alternative started with 
different token

statmt ::= 

println ( stringConst , ident )

| ident = expr

| if ( expr ) statmt (else statmt)?

| while ( expr ) statmt
| { statmt* } 

What if this is not the case?



Left Factoring Example: Function Calls
statmt ::= 

println ( stringConst , ident )

| ident = expr

| if ( expr ) statmt (else statmt)?

| while ( expr ) statmt
| { statmt* } 

| ident (expr (, expr )* )

code to parse the grammar:

} else if (lexer.token.class == Ident) { 

???

}

foo = 42 + x

foo ( u , v )



Left Factoring Example: Function Calls
statmt ::= 

println ( stringConst , ident )

| ident assignmentOrCall

| if ( expr ) statmt (else statmt)?

| while ( expr ) statmt
| { statmt* } 

assignmentOrCall ::=    “=“ expr | (expr (, expr )* )

code to parse the grammar:

} else if (lexer.token.class == Ident) { 

val id = getIdentifier(lexer.token); lexer.next

assignmentOrCall(id)

} // Factoring pulls common parts from alternatives



Beyond Statements:
Parsing Expressions



While Language with Simple Expressions

expr ::= intLiteral | ident

| expr ( + | / ) expr

statmt ::= 

println ( stringConst , ident )

| ident = expr

| if ( expr ) statmt (else statmt)?

| while ( expr ) statmt
| { statmt* } 



Abstract Syntax Trees for Expressions

abstract class Expr
case class IntLiteral(x : Int) extends Expr
case class Variable(id : Identifier) extends Expr
case class Plus(e1 : Expr, e2 : Expr) extends Expr
case class Divide(e1 : Expr, e2 : Expr) extends Expr

expr ::= intLiteral | ident

| expr + expr | expr / expr

foo + 42 / bar + arg



Parser That Follows the Grammar?

def expr : Expr = {
if (??) IntLiteral(getInt(lexer.token))
else if (??) Variable(getIdent(lexer.token))
else if (??) {

val e1 = expr; val op = lexer.token; val e2 = expr
op match Plus {

case PlusToken => Plus(e1, e2)
case DividesToken => Divides(e1, e2)

} }

expr ::= intLiteral | ident

| expr + expr | expr / expr

When should parser enter the recursive case?!

input:
foo + 42 / bar + arg



Ambiguous Grammars

expr ::= intLiteral | ident

| expr + expr | expr / expr

foo + 42 / bar + arg

Ambiguous grammar: if some token 
sequence has multiple parse trees
(then it is has multiple abstract trees).

Each node in parse tree is given by 
one grammar alternative.



An attempt to rewrite the grammar

def simpleExpr : Expr = { … }
def expr : Expr = {

var e = simpleExpr
while (lexer.token == PlusToken || 

lexer.token == DividesToken)) {
val op = lexer.token
val eNew = simpleExpr
op match {

case TokenPlus => { e = Plus(e, eNew) }
case TokenDiv => { e = Divide(e, eNew) }

}
}
e }

expr ::= simpleExpr (( + | / ) simpleExpr)*

simpleExpr ::= intLiteral | ident

foo + 42 / bar + arg

Not ambiguous, but gives wrong tree.



Ambiguous grammar: if some token sequence 
has multiple parse trees

(then it is has multiple abstract trees)

Two trees, each following the grammar, their 
leaves both give the same token sequence.



Exercise: Another Balanced 
Parenthesis Grammar

Show that the following balanced parentheses 
grammar is ambiguous (by finding two parse 
trees for some input sequence) and find 
unambiguous grammar for the same language.

B ::=  | ( B ) | B B

Is this grammar ambiguous?

B ::=  | ( B ) B



Exercise: Balanced Parentheses

Show that the following balanced parentheses 
grammar is ambiguous (by finding two parse 
trees for some input sequence) and find 
unambiguous grammar for the same language.

B ::=  | ( B ) | B B



Remark

• The same parse tree can be derived using two 
different derivations, e.g.

B -> (B) -> (BB) -> ((B)B) -> ((B)) -> (())

B -> (B) -> (BB) -> ((B)B) -> (()B) -> (())

this correspond to different orders in which 
nodes in the tree are expanded

• Ambiguity refers to the fact that there are 
actually multiple parse trees, not just multiple 
derivations.



Towards Solution

• (Note that we must preserve precisely the set 
of strings that can be derived)

• This grammar:

B ::=  | A 
A ::= ( ) | A A | (A)

solves the problem with multiple  symbols 
generating different trees, but it is still 
ambiguous: string ( ) ( ) ( ) has two different 
parse trees



Solution
• Proposed solution:

B ::=  | B (B)

• this is very smart! How to come up with it?

• Clearly, rule B::= B B generates any sequence of B's. We can also encode it 
like this:

B ::= C*
C ::= (B)

• Now we express sequence using recursive rule that does not create 
ambiguity:

B ::=  | C B
C ::= (B)

• but now, look, we "inline"  C back into the rules for so we get exactly the 
rule

B ::=  | B (B)

This grammar is not ambiguous and is the solution. We did not prove this fact 
(we only tried to find ambiguous trees but did not find any).



Exercise 2: Dangling Else

The dangling-else problem happens when the 
conditional statements are parsed using the 
following grammar. 

S ::= S ; S
S ::= id := E
S ::= if E then S
S ::= if E then S else S 

Find an unambiguous grammar that accepts the 
same conditional statements and matches the 
else statement with the nearest unmatched if.



Discussion of Dangling Else

if (x > 0) then

if (y > 0) then
z  = x + y

else x = - x

• This is a real problem languages like C, Java

– resolved by saying else binds to innermost if

• Can we design grammar that allows all 
programs as before, but only allows parse 
trees where else binds to innermost if?



Sources of Ambiguity in this Example

• Ambiguity arises in this grammar here due to:

– dangling else

– binary rule for sequence (;) as for parentheses

– priority between if-then-else and semicolon (;)

if (x > 0)

if (y > 0)
z  = x + y;
u = z + 1       // last assignment is not inside if

Wrong parse tree -> wrong generated code



How we Solved It
We identified a wrong tree and tried to refine the grammar to prevent it, by 
making a copy of the rules. Also, we changed some rules to disallow 
sequences inside if-then-else and make sequence rule non-ambiguous. The 
end result is something like this:

S::=  |A S // a way to write  S::=A*
A ::= id := E
A ::= if E then A
A ::= if E then A' else A 

A' ::= id := E
A' ::= if E then A' else A'

At some point we had a useless rule, so we deleted it.

We also looked at what a practical grammar would have to allow sequences 
inside if-then-else. It would add a case for blocks, like this:

A ::= { S }
A' ::= { S }

We could factor out some common definitions (e.g. define A in terms of A'), 
but that is not important for this problem.



Exercise: Unary Minus

1) Show that the grammar 

A ::=  − A 
A ::=  A − id 
A ::=  id

is ambiguous by finding a string that has two different 
syntax trees. 

2) Make two different unambiguous grammars for the 
same language:
a) One where prefix minus binds stronger than infix minus.
b) One where infix minus binds stronger than prefix minus.
3) Show the syntax trees using the new grammars for the 
string you used to prove the original grammar ambiguous.



Exercise: 
Left Recursive and Right Recursive

We call a production rule “left recursive” if it is of the 
form

A ::= A p

for some sequence of symbols p. Similarly, a "right-
recursive" rule is of a form

A ::= q A

Is every context free grammar that contains both left 
and right recursive rule for a some nonterminal A
ambiguous?

Answer: yes, if A is reachable from the top symbol and 
productive can produce a sequence of tokens



Making Grammars Unambiguous
- some recipes -

Ensure that there is always only one parse tree

Construct the correct abstract syntax tree



Goal: Build Expression Trees

abstract class Expr

case class Variable(id : Identifier) extends Expr

case class Minus(e1 : Expr, e2 : Expr) extends Expr

case class Exp(e1 : Expr, e2 : Expr) extends Expr

different order gives different results:

Minus(e1, Minus(e2,e3)) e1 - (e2 - e3)

Minus(Minus(e1,e2),e3) (e1 - e2) - e3



Ambiguous Expression Grammar

expr ::= intLiteral | ident

| expr + expr | expr / expr

foo + 42 / bar + arg

Show that the input above has two parse trees!

Each node in parse tree is given by 
one grammar alternative.



1) Layer the grammar by priorities

expr ::= term (- term)*

term ::= factor (^ factor)*

factor ::= id | (expr)

lower priority binds weaker, 

so it goes outside

expr ::= ident | expr - expr | expr ^ expr | (expr)



2) Building trees: left-associative "-"

LEFT-associative operator

x – y – z    (x – y) – z 

Minus(Minus(Var(“x”),Var(“y”)),   Var(“z”))

def expr : Expr = {

var e =

while (lexer.token == MinusToken) {

lexer.next

} 

e

}

e = Minus(e, term)

term



3) Building trees: right-associative "^"

RIGHT-associative operator – using recursion 
(or also loop and then reverse a list)

x ^ y ^ z    x ^ (y ^ z)
Exp(Var(“x”),   Exp(Var(“y”), Var(“z”))  )

def expr : Expr = {

val e = factor

if (lexer.token == ExpToken) {

lexer.next

Exp(e, expr)

} else e

}



Manual Construction of Parsers

• Typically one applies previous transformations 
to get a nice grammar

• Then we write recursive descent parser as set 
of mutually recursive procedures that check if 
input is well formed

• Then enhance such procedures to construct 
trees, paying attention to the associativity and 
priority of operators



Grammar Rules as Logic Programs
Consider grammar G:   S ::= a | b S

L(_) - language of non-terminal

L(G) = L(S) where S is the start non-terminal

L(S) = L(G) = { bna | n >= 0}

From meaning of grammars:

w  L(S)  w=a \/  w  L(b S)

To check left hand side, we need to check right 
hand side. Which of the two sides?

– restrict grammar, use current symbol to decide - LL(1)

– use dynamic programming (CYK) for any grammar



Recursive Descent - LL(1)

• See wiki for

– computing first, nullable, follow for non-terminals 
of the grammar

– construction of parse table using this information

– LL(1) as an interpreter for the parse table



Grammar vs Recursive Descent Parser

expr ::= term termList
termList ::= + term termList

|  - term termList
| 

term ::= factor factorList
factorList ::= * factor factorList

| / factor factorList
| 

factor ::= name | ( expr )
name ::= ident

def expr = { term; termList }
def termList =
if (token==PLUS) {

skip(PLUS); term; termList
} else if (token==MINUS)

skip(MINUS); term; termList
}

def term = { factor; factorList }

...

def factor =
if (token==IDENT) name
else if (token==OPAR) {
skip(OPAR); expr; skip(CPAR)

} else error("expected ident or )")



Rough General Idea

A ::=  B1 ... Bp

| C1 ... Cq

| D1 ... Dr

def A = 
if (token  T1) {

B1 ... Bp

else if (token  T2) {
C1 ... Cq

} else if (token  T3) {
D1 ... Dr

} else error("expected T1,T2,T3")
where:

T1 = first(B1 ... Bp)
T2 = first(C1 ... Cq)
T3 = first(D1 ... Dr)

first(B1 ... Bp) = {a | B1...Bp ... aw }

T1, T2, T3 should be disjoint sets of tokens.



Computing first in the example

expr ::= term termList
termList ::= + term termList

|  - term termList
| 

term ::= factor factorList
factorList ::= * factor factorList

| / factor factorList
| 

factor ::= name | ( expr )
name ::= ident

first(name) = {ident}
first(( expr ) ) = { ( }
first(factor) = first(name)

U first( ( expr ) )
= {ident} U{ ( }
= {ident, ( }

first(* factor factorList) = { * } 

first(/ factor factorList) = { / } 

first(factorList) = { *, / }

first(term) = first(factor) = {ident, ( }

first(termList) = { + , - } 

first(expr) = first(term) = {ident, ( }



Algorithm for first

Given an arbitrary context-free grammar with a 
set of rules of the form X ::= Y1 ... Yn compute 
first for each right-hand side and for each 
symbol.

How to handle

• alternatives for one non-terminal

• sequences of symbols

• nullable non-terminals

• recursion



Rules with Multiple Alternatives

A ::=  B1 ... Bp

| C1 ... Cq

| D1 ... Dr

first(A) =  first(B1... Bp)
U first(C1 ... Cq)
U first(D1 ... Dr)

Sequences

first(B1... Bp) = first(B1) if not nullable(B1)

first(B1... Bp) = first(B1) U ... U first(Bk)

if nullable(B1), ..., nullable(Bk-1) and

not nullable(Bk) or k=p



Abstracting into Constraints

expr ::= term termList
termList ::= + term termList

|  - term termList
| 

term ::= factor factorList
factorList ::= * factor factorList

| / factor factorList
| 

factor ::= name | ( expr )
name ::= ident

expr' = term'
termList' =  {+}

U {-}

term' = factor'
factorList' = {*}

U { / } 

factor' = name' U { ( }
name' = { ident }

recursive grammar: constraints over finite sets: expr' is first(expr)

nullable: termList, factorList
For this nice grammar, there is
no recursion in constraints.
Solve by substitution.



Example to Generate Constraints

S ::= X | Y 
X ::= b | S Y 
Y ::= Z X b | Y b
Z ::=  | a

S' = X' U Y' 
X' =

reachable (from S):
productive:
nullable:

terminals: a,b
non-terminals: S, X, Y, Z

First sets of terminals: 
S', X', Y', Z'  {a,b}



Example to Generate Constraints

S ::= X | Y 
X ::= b | S Y 
Y ::= Z X b | Y b
Z ::=  | a

S' = X' U Y' 
X' = {b} U S'
Y' = Z' U X' U Y'
Z' = {a}

reachable (from S): S, X, Y, Z
productive: X, Z, S, Y
nullable: Z

terminals: a,b
non-terminals: S, X, Y, Z

These constraints are recursive.
How to solve them?

S', X', Y', Z'  {a,b}
How many candidate solutions
• in this case?
• for k tokens, n nonterminals?



Iterative Solution of first Constraints

S'    X'    Y'        Z' 
{}     {}     {}        {}
{}     {b}   {b}     {a}
{b}   {b}  {a,b}   {a}

{a,b} {a,b} {a,b}   {a}
{a,b} {a,b} {a,b}   {a}

S' = X' U Y' 
X' = {b} U S'
Y' = Z' U X' U Y'
Z' = {a}

• Start from all sets empty.
• Evaluate right-hand side and 

assign it to left-hand side.
• Repeat until it stabilizes.

1.
2.
3.
4.
5.

Sets grow in each step
• initially they are empty, so they can only grow
• if sets grow, the RHS grows (U is monotonic), and so does LHS
• they cannot grow forever: in the worst case contain all tokens



Constraints for Computing Nullable

• Non-terminal is nullable if it can derive 

S ::= X | Y 
X ::= b | S Y 
Y ::= Z X b | Y b
Z ::=  | a

S' = X' | Y' 
X' = 0 | (S' & Y')
Y' = (Z' & X' & 0) | (Y' & 0)
Z' = 1 | 0

S', X', Y', Z'  {0,1}
0  - not nullable
1  - nullable
|  - disjunction
& - conjunction

S'    X'    Y'    Z' 
0     0     0     0
0     0     0     1
0     0     0     1

1.
2.
3.

again monotonically growing



Computing first and nullable

• Given any grammar we can compute

– for each non-terminal X whether nullable(X)

– using this, the set first(X) for each non-terminal X

• General approach:

– generate constraints over finite domains, 
following the structure of each rule

– solve the constraints iteratively

• start from least elements

• keep evaluating RHS and re-assigning the value to LHS

• stop when there is no more change



Rough General Idea

A ::=  B1 ... Bp

| C1 ... Cq

| D1 ... Dr

def A = 
if (token  T1) {

B1 ... Bp

else if (token  T2) {
C1 ... Cq

} else if (token  T3) {
D1 ... Dr

} else error("expected T1,T2,T3")
where:

T1 = first(B1 ... Bp)
T2 = first(C1 ... Cq)
T3 = first(D1 ... Dr)

T1, T2, T3 should be disjoint sets of tokens.



Exercise 1

A ::= B EOF
B ::=  | B B | (B)

• Tokens: EOF, (, )

• Generate constraints and compute nullable
and first for this grammar. 

• Check whether first sets for different 
alternatives are disjoint.



Exercise 2

S ::= B EOF
B ::=  | B (B)

• Tokens: EOF, (, )

• Generate constraints and compute nullable
and first for this grammar. 

• Check whether first sets for different 
alternatives are disjoint.



Exercise 3
Compute nullable, first for this grammar:

stmtList ::=  | stmt stmtList

stmt ::= assign | block 

assign ::= ID =  ID  ; 

block ::= beginof ID stmtList ID ends

Describe a parser for this grammar and explain how it 
behaves on this input:

beginof myPrettyCode

x = u; 
y = v; 

myPrettyCode ends



Problem Identified

stmtList ::=  | stmt stmtList

stmt ::= assign | block 

assign ::= ID  =  ID  ; 

block ::= beginof ID stmtList ID ends

Problem parsing stmtList: 

– ID could start alternative stmt stmtList

– ID could follow stmt, so we may wish to parse 
that is, do nothing and return

• For nullable non-terminals, we must also 
compute what follows them



General Idea for nullable(A)

A ::=  B1 ... Bp

| C1 ... Cq

| D1 ... Dr

def A = 
if (token  T1) {

B1 ... Bp

else if (token  (T2  U  TF)) {
C1 ... Cq

} else if (token  T3) {
D1 ... Dr

} // no else error, just return
where:

T1 = first(B1 ... Bp)
T2 = first(C1 ... Cq)
T3 = first(D1 ... Dr)
TF = follow(A)

Only one of the alternatives can be nullable (e.g. second)
T1, T2, T3, TF should be pairwise disjoint sets of tokens.



LL(1) Grammar - good for building 
recursive descent parsers 

• Grammar is LL(1) if for each nonterminal X

– first sets of different alternatives of X are disjoint

– if nullable(X), first(X) must be disjoint from follow(X)

• For each LL(1) grammar we can build 
recursive-descent parser

• Each LL(1) grammar is unambiguous

• If a grammar is not LL(1), we can sometimes 
transform it into equivalent LL(1) grammar



Computing if a token can follow

first(B1 ... Bp) = {a | B1...Bp ... aw }

follow(X) = {a | S    ...  ...Xa... }

There exists a derivation from the start symbol 
that produces a sequence of terminals and 
nonterminals of the form  ...Xa...
(the token a follows the non-terminal X)



Rule for Computing Follow

Given X ::= YZ (for reachable X)

then first(Z)  follow(Y)
and follow(X)  follow(Z)

now take care of nullable ones as well:

For each rule X ::= Y1 ... Yp ... Yq ... Yr

follow(Yp) should contain:

• first(Yp+1Yp+2...Yr)

• also follow(X) if  nullable(Yp+1Yp+2Yr)



Compute nullable, first, follow

stmtList ::=  | stmt stmtList

stmt ::= assign | block 

assign ::= ID  =  ID  ; 

block ::= beginof ID stmtList ID ends

Is this grammar LL(1)?



Conclusion of the Solution

The grammar is not LL(1) because we have 

• nullable(stmtList)

• first(stmt)  follow(stmtList) = {ID} 

• If a recursive-descent parser sees ID, it does 
not know if it should 

– finish parsing stmtList or

– parse another stmt



Table for LL(1) Parser: Example

S ::= B EOF 
(1)

B ::=  | B (B)
(1) (2)

EOF ( )

S {1} {1} {}

B {1} {1,2} {1}

nullable: B

first(S) = { ( }
follow(S) = {}

first(B) = { ( }
follow(B) = { ), (, EOF }

Parsing table:

parse conflict - choice ambiguity:
grammar not LL(1)

empty entry:
when parsing S,
if we see ) ,
report error

1 is in entry because ( is in follow(B)
2 is in entry because ( is in first(B(B))



Table for LL(1) Parsing

Tells which alternative to take, given current token:

choice : Nonterminal x Token -> Set[Int]

A ::=  (1) B1 ... Bp

| (2) C1 ... Cq

| (3)  D1 ... Dr

For example, when parsing A and seeing token t

choice(A,t) = {2}  means: parse alternative 2   (C1 ... Cq )

choice(A,t) = {1}  means: parse alternative 3   (D1 ... Dr)

choice(A,t) = {}    means: report syntax error

choice(A,t) = {2,3} : not LL(1) grammar

if   t  first(C1 ... Cq)  add 2
to choice(A,t)

if   t  follow(A) add K to choice(A,t) 
where K is nullable alternative 



Transform Grammar for LL(1)

S ::= B EOF 
B ::=  | B (B)

(1) (2)

EOF ( )

S {1} {1} {}

B {1} {1,2} {1}

Transform the grammar 
so that parsing table has 
no conflicts.

Old parsing table:

conflict - choice ambiguity:
grammar not LL(1)

1 is in entry because ( is in follow(B)
2 is in entry because ( is in first(B(B))

EOF ( )

S

B

S ::= B EOF 
B ::=   | (B) B

(1) (2)

Left recursion is bad for LL(1)
choice(A,t) 



Parse Table is Code for Generic Parser
var stack : Stack[GrammarSymbol] // terminal or non-terminal
stack.push(EOF);
stack.push(StartNonterminal);
var lex = new Lexer(inputFile)
while (true) {
X = stack.pop
t = lex.curent
if (isTerminal(X))

if (t==X) if (X==EOF) return success
else lex.next // eat token t 

else parseError("Expected " + X)
else { // non-terminal

cs = choice(X)(t) // look up parsing table
cs match { // result is a set
case {i} => { // exactly one choice

rhs = p(X,i) // choose correct right-hand side
stack.push(reverse(rhs)) }

case {} => parseError("Parser expected an element of " + unionOfAll(choice(X)))
case _ => crash(“parse table with conflicts - grammar was not LL(1)")

}
}



What if we cannot transform the 
grammar into LL(1)?

1) Redesign your language

2) Use a more powerful parsing technique


