Automating Construction of Lexers

Example in javacc

TOKEN: {

```
<IDENTIFIER: <LETTER> (<LETTER> | <DIGIT> | "_")* >
```

```
| <INTLITERAL: <DIGIT> (<DIGIT>)* >
```

```
| <LETTER: ["a"-"z"] | ["A"-"Z"]>
```

```
| <DIGIT: ["0"-"9"]>
```

```
}
```

```
SKIP: {
```

```
"" | "\n" | "\t"
```

}

--> get automatically generated code for lexer!

But how does javacc do it?

A Recap: Simple RE to Programs

Regular Expression

- a
- r1 r2
- (r1|r2)

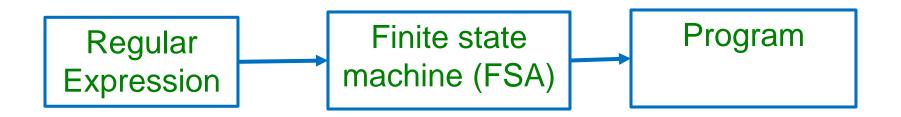
r*

Code

- if (current=a) next else error
- (code for r1);
 (code for r2)
- if (current in first(r1)) code for r1
 else code for r2
- while(current in first(r)) code for r

Regular Expression to Programs

- How can we write a lexer for (a*b | a) ?
- aaaab Vs aaaaa

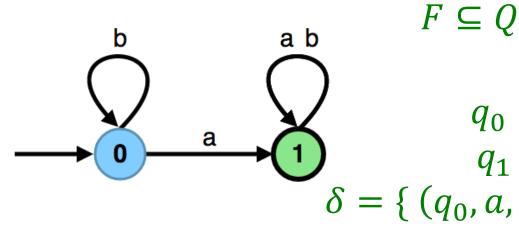


Finite Automaton (Finite State Machine)

 $\delta \subseteq Q \times \Sigma \times Q,$

 $q_0 \in Q$,

• A = (Σ, Q, q₀, δ, F)



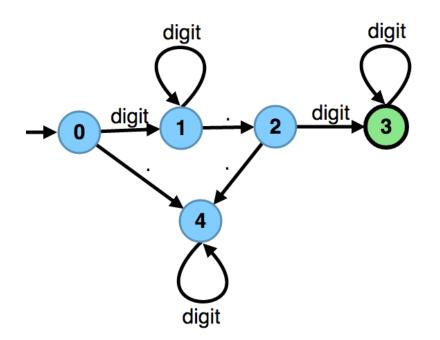
• Σ - alphabet

 $q_{1} \subseteq Q$ $\delta = \{ (q_{0}, a, q_{1}), (q_{0}, a, q_{0}) \\ (q_{1}, a, q_{1}), (q_{1}, b, q_{1}) \}$

 $q_0 \in Q$,

- Q states (nodes in the graph)
- q₀ initial state (with '->' sign in drawing)
- δ transitions (labeled edges in the graph)
- F final states (double circles)

Numbers with Decimal Point



digit digit* . digit digit*

What if the decimal part is optional?

Automata Tutor www.automatatutor.com

- A website for learning automata
- We have posted some exercises for you to try.
- Create an account for yourself
- Register to the course
 - Course Id: 23EPFL-CL
 - Password: GHL2AQ3I

Design a DFA which accepts all strings in {a, b}* that has an even length

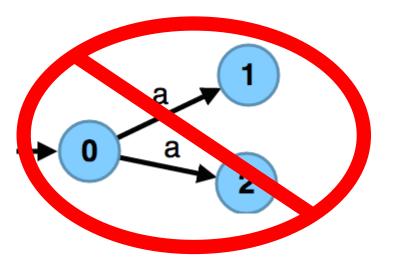
 Construct an automaton that recognizes all strings over {a, b} that contain "aba" as a substring

• Construct an automaton that recognizes all strings over { a,b} that contain "aba" as a substring and is of even length

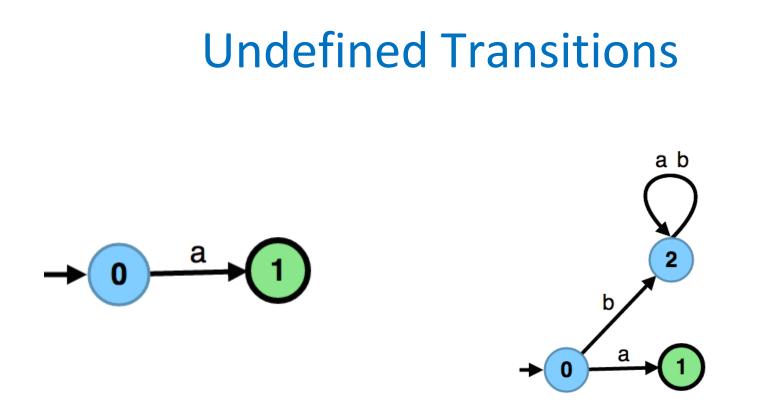
• Design a DFA which accepts all the numbers written in binary and divisible by 2. For example, your automaton should accept the words 0, 10, 100, 110...

- Design a DFA which accepts all the numbers written in binary and divisible by 3. For example your automaton should accept the words 0, 11, 110, 1001, 1100 ...
- Can you generalize this to any divisor 'n'?
- Can you generalize this to any base 'b' ?

Kinds of Finite State Automata

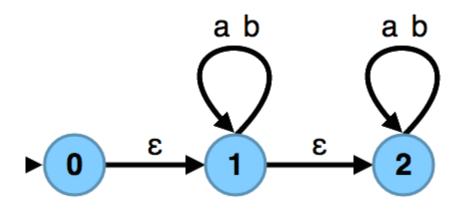


- Deterministic FA (DFA): δ is a function : $(Q, \Sigma) \mapsto Q$
- Non-deterministic FA (NFA): δ could be a relation
- In NFA there is no unique next state. We have a set of possible next states.



 Undefined transitions lead to a sink state from where no input can be accepted

Epsilon Transitions



- Epsilon transitions: traversing them does not consume anything (empty word)
- More generally, transitions labeled by a word: traversing such transition consumes that entire word at a time

Interpretation of Non-Determinism

- For a given word (string), a path in automaton lead to accepting, another to a rejecting state
- Does the automaton accept in such case?
 - yes, if there exists an accepting path in the automaton graph whose symbols give that word

 Construct a NFA that recognizes all strings over {a,b} that contain "aba" as a substring

NFA Vs DFA

- For every NFA there exists an equivalent DFA that accepts the same set of strings
- But, NFAs could be exponentially smaller.
- That is, there are NFAs such that every DFA equivalent to it has exponentially more number of states

- Construct a NFA and a DFA that recognizes all strings over {a,b,c} that do not contain all the alphabets a, b and c.
 - (let's start with a regular expression)
- Food for thought:
 - Can you prove that every DFA for this language will have exponentially more states than the NFA ?

Regular Expressions and Automata

Theorem:

If L is a set of words, it is describable by a regular expression iff (if and only if) it is the set of words accepted by some finite automaton.

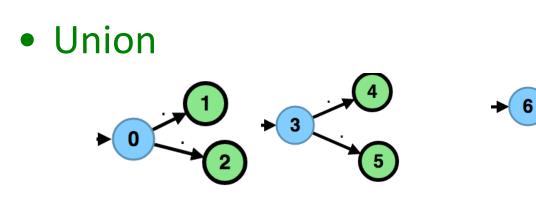
Algorithms:

- regular expression \rightarrow automaton (important!)
- automaton \rightarrow regular expression (cool)

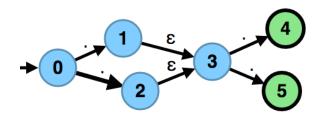
Recursive Constructions

0

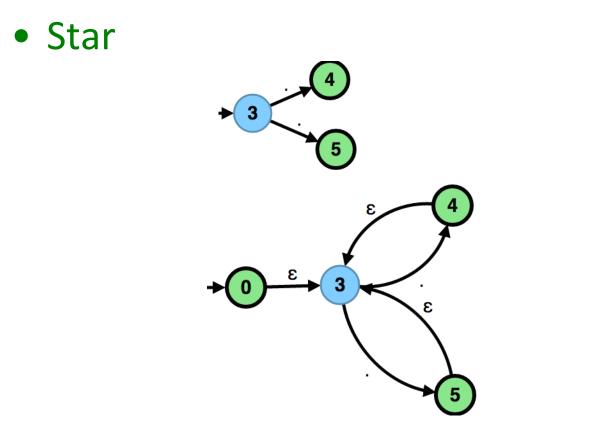
3



Concatenation

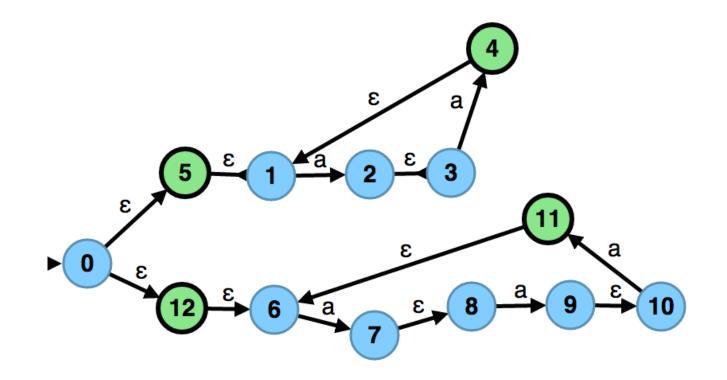


Recursive Constructions



Exercise: (aa)* | (aaa)*

• Construct an NFA for the regular expression

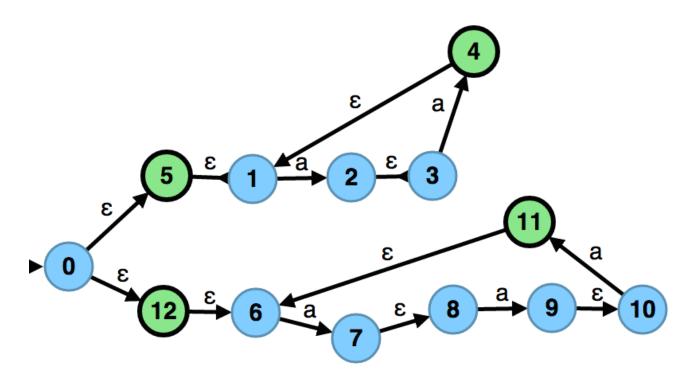


NFAs to DFAs (Determinisation)

 keep track of a set of all possible states in which the automaton could be

view this finite set as one state of new automaton

NFA to DFA Conversion



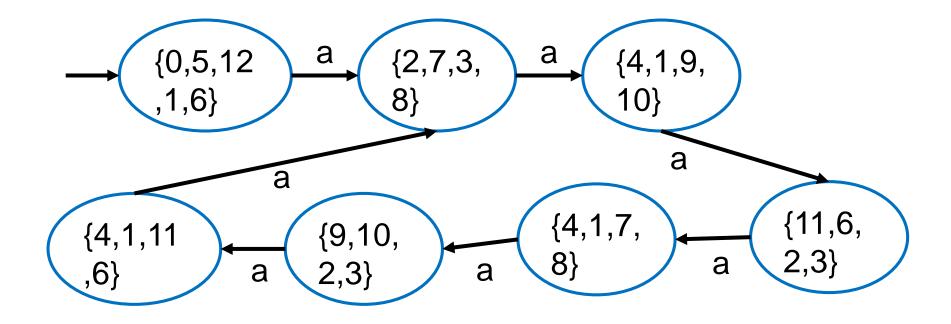
Possible states of the DFA: 2^{Q}

 $\{ \{ \}, \{ 0\}, \dots, \{12\}, \{0,1\}, \dots, \{0,12\}, \dots, \{12, 12\}, \\ \{0,1,2\}, \dots, \{ 0,1,2\dots, 12 \} \}$

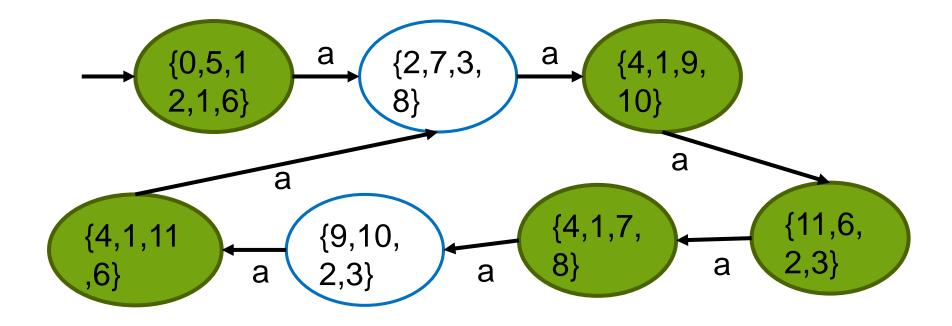
NFA to DFA Conversion

- Epsilon Closure
- E(0) = { 0,5,1,2,6}, E(1) = { 1}, E(2) = {
- $E(q) = \{ q_1 \mid \delta(q, \epsilon, q_1) \}$
- DFA: $(\Sigma, 2^Q, q'_0, \delta', F')$
- $q_0' = E(q_0)$
- $\delta'(q', a) = \bigcup_{\{\exists q_1 \in q', \delta(q_1, a, q_2)\}} E(q_2)$
- $F' = \{ q' | q' \in 2^Q, q' \cap F \neq \emptyset \}$

NFA to DFA Conversion



NFA to DFA Example



Remark: Relations and Functions

• Relation $r \subseteq B \times C$

r = { ..., (b,c1) , (b,c2) ,... }

• Corresponding function: f : B -> 2^C

f = { ... (b,{c1,c2}) ... }

 $f(b) = \{ c \mid (b,c) \in r \}$

- Given a state, next-state function returns the set of new states
 - for deterministic automaton, the set has exactly 1 element

Clarifications

- what happens if a transition on an alphabet 'a' is not defined for a state 'q' ?
- $\delta'(\{q\}, a) = \emptyset$
- $\delta'(\emptyset, a) = \emptyset$

- Empty set represents a state in the NFA
- It is a trap/sink state: a state that has selfloops for all symbols, and is non-accepting.

Running NFA (without epsilons) in Scala

```
def \delta(q : State, a : Char) : Set[States] = { ... }
def \delta'(S : Set[States], a : Char) : Set[States] = {
 for (q1 <- S, q2 <- \delta(q1,a)) yield q2
}
def accepts(input : MyStream[Char]) : Boolean = {
 var S : Set[State] = Set(q0) // current set of states
 while (!input.EOF) {
  val a = input.current
  S = \delta'(S,a) // next set of states
 !(S.intersect(finalStates).isEmpty)
```

Running NFA in Scala

• Modify this to handle epsilons transitions.

```
def \delta(q : State, a : Char) : Set[States] = \{ ... \}
def \delta'(S : Set[States], a : Char) : Set[States] = \{ for (q1 <- S, q2 <- <math>\delta(q1,a))
for (q <- \delta(q2, \epsilon)) yield q
}
```

Minimizing DFAs

- Merge equivalent states.
 - q_0 and q_1 are equivalent iff there is no distinguishing string

$$- \, \hat{\delta}(q_0, z) \in F \Leftrightarrow \hat{\delta}(q_1, z) \in F$$

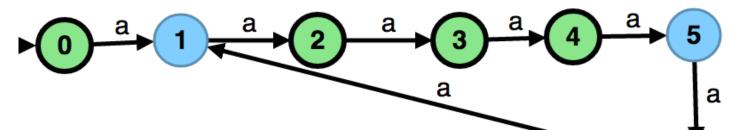
- Corollary of *Myhill-Nerode Theorem*

• Final and non-final states are not equivalent as ϵ distinguishes them

Minimizing DFAs: Procedure

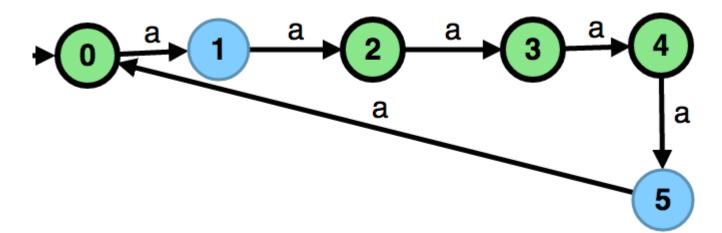
- Maintain a partition A of states
- Every set in the partition has a different behavior i.e, they have a distinguishing string
- States within a partition may or may not be equivalent
- Initially, we have (F, Q F)

Minimizing DFAs: Procedure



- A: {0,2,3,4,6} {1,5}
- split based on {0,2,3,4,6}
 A: {0,4,6} {2,3} {1,5}
- split based on {2,3}
 - $A: \{0,4,6\} \{2,3\} \{1\} \{5\}$
- split based on {1}
 - $A: \{0,6\} \{4\} \{2,3\} \{1\} \{5\}$
- split based on {4}
 - $A: \{0,6\} \{4\} \{2\} \{3\} \{1\} \{5\}$

Minimizing DFAs: Procedure



- The minimal DFA is unique (up to isomorphism)
- Implication of Myhill-Nerode theorem
- Food For Thought: Can we minimize NFA ?

Properties of Automatons

- Complement: $(\Sigma^* \setminus L(A))$
 - switch accepting and non-accepting states in deterministic automaton
 - Does not work for non-deterministic automatons
- Intersection: $L(A_1) \cap L(A_2)$
 - $(\Sigma, Q_1 \times Q_2, (q_0^1, q_0^2), \delta', F_1 \times F_2)$
 - $-\delta'((q_1,q_2),a) = \delta(q_1,a) \times \delta(q_2,a)$

Properties of Automatons

• Intersection:

complement union of complements

- Set difference: intersection with complement
- Inclusion: emptiness of set difference
- Equivalence: two inclusions

• Design a DFA which accepts all the numbers written in binary and divisible by 6. For example your automaton should accept the words 0, 110 (6 decimal) and 10010 (18 decimal).

Exercise: first, nullable

• For each of the following languages find the *first* set. Determine if the language is *nullable*.

- (a|b)* (b|d) ((c|a|d)* | a*)