
Automating Construction of Lexers

Example in javacc

TOKEN: {

<IDENTIFIER: <LETTER> (<LETTER> | <DIGIT> | "_")* >

| <INTLITERAL: <DIGIT> (<DIGIT>)* >

| <LETTER: ["a"-"z"] | ["A"-"Z"]>

| <DIGIT: ["0"-"9"]>

}

SKIP: {

" " | "\n" | "\t"

}

--> get automatically generated code for lexer!

But how does javacc do it?

A Recap:
Simple RE to Programs

Regular Expression

• a

• r1 r2

• (r1|r2)

• r*

Code

• if (current=a) next else error

• (code for r1) ;
(code for r2)

• if (current in first(r1))
code for r1

else
code for r2

• while(current in first(r))
code for r

Regular Expression to Programs

• How can we write a lexer for (a*b | a) ?

• aaaab Vs aaaaa

Regular

Expression

Finite state

machine (FSA)

Program

Finite Automaton (Finite State Machine)

• A = (, Q, q0, , F)

•  - alphabet

• Q - states (nodes in the graph)

• q0 - initial state (with ‘->' sign in drawing)

•  - transitions (labeled edges in the graph)

• F - final states (double circles)

𝛿 ⊆ 𝑄 × Σ × 𝑄,
𝑞0 ∈ 𝑄,
𝐹 ⊆ 𝑄

𝑞0 ∈ 𝑄,
𝑞1 ⊆ 𝑄

𝛿 = { 𝑞0, 𝑎, 𝑞1 , 𝑞0, 𝑎, 𝑞0

𝑞1, 𝑎, 𝑞1 , 𝑞1, 𝑏, 𝑞1 }

Numbers with Decimal Point

digit digit* . digit digit*

What if the decimal part is optional?

Automata Tutor
www.automatatutor.com

• A website for learning automata

• We have posted some exercises for you to try.

• Create an account for yourself

• Register to the course

– Course Id: 23EPFL-CL

– Password: GHL2AQ3I

Exercise

• Design a DFA which accepts all strings in {a, b}* that has an
even length

Exercise

• Construct an automaton that recognizes all strings over {a, b}
that contain "aba" as a substring

Exercise

• Construct an automaton that recognizes all strings over { a,b}
that contain "aba" as a substring and is of even length

Exercise

• Design a DFA which accepts all the numbers written in binary
and divisible by 2. For example, your automaton should
accept the words 0, 10, 100, 110…

Exercise

• Design a DFA which accepts all the numbers written in binary
and divisible by 3. For example your automaton should accept
the words 0, 11, 110, 1001, 1100 …

• Can you generalize this to any divisor ‘n’ ?

• Can you generalize this to any base ‘b’ ?

• Deterministic FA (DFA):  is a function : 𝑄, Σ ↦ 𝑄

• Non-deterministic FA (NFA):  could be a relation

• In NFA there is no unique next state. We have a set of
possible next states.

Kinds of Finite State Automata

Undefined Transitions

• Undefined transitions lead to a sink state from
where no input can be accepted

Epsilon Transitions

• Epsilon transitions: traversing them does not
consume anything (empty word)

• More generally, transitions labeled by a word:
traversing such transition consumes that
entire word at a time

Interpretation of Non-Determinism

• For a given word (string), a path in automaton lead to
accepting, another to a rejecting state

• Does the automaton accept in such case?

– yes, if there exists an accepting path in the automaton
graph whose symbols give that word

Exercise

• Construct a NFA that recognizes all strings over {a,b} that
contain "aba" as a substring

NFA Vs DFA

• For every NFA there exists an equivalent DFA that
accepts the same set of strings

• But, NFAs could be exponentially smaller.

• That is, there are NFAs such that every DFA
equivalent to it has exponentially more number of
states

Exercise

• Construct a NFA and a DFA that recognizes all strings
over {a,b,c} that do not contain all the alphabets a, b
and c.

(let’s start with a regular expression)

• Food for thought:

– Can you prove that every DFA for this language will have
exponentially more states than the NFA ?

Regular Expressions and Automata

Theorem:

If L is a set of words, it is describable by a
regular expression iff (if and only if) it is the set
of words accepted by some finite automaton.

Algorithms:

• regular expression  automaton (important!)

• automaton  regular expression (cool)

Recursive Constructions

• Union

• Concatenation

Recursive Constructions

• Star

Exercise: (aa)* | (aaa)*

• Construct an NFA for the regular expression

NFAs to DFAs (Determinisation)

• keep track of a set of all possible states in
which the automaton could be

• view this finite set as one state of new
automaton

NFA to DFA Conversion

Possible states of the DFA: 2𝑄

{ { } , { 0},…{12}, {0,1}, …,{0,12}, …{12, 12},

{0,1,2} …, { 0,1,2…,12 } }

NFA to DFA Conversion

• Epsilon Closure

• E(0) = { 0,5,1,2,6}, E(1) = { 1}, E(2) = {

• 𝐸 𝑞 = 𝑞1 𝛿 𝑞, 𝜖, 𝑞1 }

• DFA: (Σ, 2𝑄 , 𝑞0
′ , 𝛿′, 𝐹′)

• 𝑞0
′ = 𝐸 𝑞0

• 𝛿′ 𝑞′, 𝑎 = ∃𝑞1∈𝑞′,𝛿 𝑞1,𝑎,𝑞2
𝐸(𝑞2)

• 𝐹′ = 𝑞′ 𝑞′ ∈ 2𝑄, 𝑞′ ∩ 𝐹 ≠ ∅}

NFA to DFA Conversion

{0,5,12

,1,6}

{2,7,3,

8}

a {4,1,9,

10}

a

{11,6,

2,3}

a

{4,1,7,

8}
{9,10,

2,3}

{4,1,11

,6} aaa

a

NFA to DFA Example

{0,5,1

2,1,6}

{2,7,3,

8}

a {4,1,9,

10}

a

{11,6,

2,3}

a

{4,1,7,

8}
{9,10,

2,3}

{4,1,11

,6} aaa

a

Remark: Relations and Functions

• Relation r  B x C
r = { ..., (b,c1) , (b,c2) ,... }

• Corresponding function: f : B -> 2C

f = { ... (b,{c1,c2}) ... }

f(b) = { c | (b,c)  r }

• Given a state, next-state function returns the
set of new states

– for deterministic automaton, the set has exactly 1
element

Clarifications

• what happens if a transition on an alphabet ‘a’
is not defined for a state ‘q’ ?

• 𝛿′ {𝑞}, 𝑎 = ∅

• 𝛿′ ∅, 𝑎 = ∅

• Empty set represents a state in the NFA

• It is a trap/sink state: a state that has self-
loops for all symbols, and is non-accepting.

Running NFA (without epsilons) in
Scala

def (q : State, a : Char) : Set[States] = { ... }
def '(S : Set[States], a : Char) : Set[States] = {

for (q1 <- S, q2 <- (q1,a)) yield q2
}

def accepts(input : MyStream[Char]) : Boolean = {

var S : Set[State] = Set(q0) // current set of states
while (!input.EOF) {

val a = input.current
S = '(S,a) // next set of states

}
!(S.intersect(finalStates).isEmpty)

}

Running NFA in Scala

• Modify this to handle epsilons transitions.

def (q : State, a : Char) : Set[States] = { ... }
def '(S : Set[States], a : Char) : Set[States] = {

for (q1 <- S, q2 <- (q1,a))

for(q <- (q2, 𝜖)) yield q
}

Minimizing DFAs

• Merge equivalent states.

– 𝑞0 and 𝑞1are equivalent iff there is no
distinguishing string

– 𝛿 𝑞0, 𝑧 ∈ 𝐹 ⇔ 𝛿 𝑞1, 𝑧 ∈ 𝐹

– Corollary of Myhill-Nerode Theorem

• Final and non-final states are not equivalent
as 𝜖 distinguishes them

Minimizing DFAs: Procedure

• Maintain a partition A of states

• Every set in the partition has a different
behavior i.e, they have a distinguishing string

• States within a partition may or may not be
equivalent

• Initially, we have (F, Q - F)

Minimizing DFAs: Procedure

• A: {0,2,3,4,6} {1,5}

• split based on {0,2,3,4,6}

– A: {0,4,6} {2,3} {1,5}

• split based on {2,3}

– A: {0,4,6} {2,3} {1} {5}

• split based on {1}

– A: {0,6} {4} {2,3} {1} {5} {6}

• split based on {4}

– A: {0,6} {4} {2} {3} {1} {5} {6}

Minimizing DFAs: Procedure

• The minimal DFA is unique (up to
isomorphism)

• Implication of Myhill-Nerode theorem

• Food For Thought: Can we minimize NFA ?

Exercise

Properties of Automatons

• Complement: (Σ∗∖ 𝐿(𝐴))

– switch accepting and non-accepting states in
deterministic automaton

– Does not work for non-deterministic automatons

• Intersection: 𝐿 𝐴1 ∩ 𝐿(𝐴2)

– Σ, 𝑄1 × 𝑄2, 𝑞0
1, 𝑞0

2 , 𝛿′, 𝐹1 × 𝐹2

– 𝛿′ (𝑞1, 𝑞2), 𝑎 = 𝛿 𝑞1, 𝑎 × 𝛿(𝑞2, 𝑎)

Properties of Automatons

• Intersection:

– complement union of complements

• Set difference: intersection with complement

• Inclusion: emptiness of set difference

• Equivalence: two inclusions

Exercise

• Design a DFA which accepts all the numbers written in binary
and divisible by 6. For example your automaton should accept
the words 0, 110 (6 decimal) and 10010 (18 decimal).

Exercise: first, nullable

• For each of the following languages find the
first set. Determine if the language is nullable.

– (a|b)* (b|d) ((c|a|d)* | a*)

– language given by automaton:

Automated Construction of Lexers
– let r1, r2, ..., rn be regular expressions for token classes

– consider combined regular expression: (r1 | r2 | ... | rn)

– recursively map a regular expression to a non-deterministic
automaton

– eliminate epsilon transitions and determinize

– optionally minimize A3 to reduce its size  A4

– the result only checks that input can be split into tokens,
does not say how to split it

From (r1|r2|...|rn) to a Lexer

• For each accepting state of ri specify the token
class i being recognized

• Longest match rule: remember last token and
input position for a last accepted state

• When no accepting state can be reached
(effectively: when we are in a trap state)

– revert position to last accepted state

– return last accepted token

• Why can’t we simply use (r1|r2|...|rn)* ?

Exercise

Build lexical analyzer for the following two
tokens using longest match. The first token class
has a higher priority:

binaryDigit ::= (z|1)*

ternaryDigit ::= (0|1|2)*

1111z1021z1 

Realistic Exercise: Integer Literals of
Scala

• Integer literals are in three forms in Scala: decimal,
hexadecimal and octal. The compiler discriminates different
classes from their beginning.

– Decimal integers are started with a non-zero digit.

– Hexadecimal numbers begin with 0x or 0X and may
contain the digits from 0 through 9 as well as upper or
lowercase digits from A to F.

– If the integer number starts with zero, it is in octal
representation so it can contain only digits 0 through 7.

– l or L at the end of the literal shows the number is Long.

• Draw a single DFA that accepts all the allowable integer
literals.

• Write the corresponding regular expression.

Exercise

• Let L be the language of strings over {<, =}
defined by regexp (<|=| <====*). That is,
L contains <,=, and words <=n for n >= 3.

• Construct a DFA that accepts L

• Describe how the lexical analyzer will tokenize
the following inputs.

1) <=====

2) ==<==<==<==<==

3) <=====<

More Questions

• For which of the following languages can you
find an automaton or regular expression:

– Sequence of open or closed parentheses of even
length? E.g. (), ((,)),)()))(, …

– as many digits before as after decimal point?

– Sequence of balanced parentheses
((()) ()) - balanced
()) (() - not balanced

– Comments from // until LF

– Nested comments like /* ... /* */ … */

