Automating Construction of Lexers

Example in javacc

TOKEN: {

<IDENTIFIER: <LETTER> (<LETTER> | <DIGIT> | " ")* >
<INTLITERAL: <DIGIT> (<DIGIT>)* >

<LETTER: ["a"-"z"] | ['A"-"Z"]>

<DIGIT: ["0"-"9"]>

J
SKIP: {

NI UE S

--> get automatically generated code for lexer!

But how does javacc do it?

Regular Expression

® 3
e r1r2

e (r1|r2)

A Recap:
Simple RE to Programs

Code

if (current=a) next else error

(code forrl) ;
(code for r2)

if (current in first(rl))
code forrl

else
code for r2

while(current in first(r))
code forr

Regular Expression to Programs

e How can we write a lexer for (a*b | a) ?

e 3aaab Vs aaaaa

Regular
EXxpression

Finite state
machine (FSA)

Program

Finite Automaton (Finite State Machine)

d €SO XXXQ0,

qOEQ;
b ab FQQ

a ' qOEQJ
_" o q1 S 0Q

5 — { (Qo; a, CI1): (qO’ a, qO)

e Y -alphabet (91,a,91),(q1,b,q1)}
e (Q - states (nodes in the graph)

° A= (ZI Q/ qO) 6; F)

* (, - initial state (with ->' sign in drawing)
e O - transitions (labeled edges in the graph)
e F-final states (double circles)

Numbers with Decimal Point

digit

digit digit* . digit digit™

What if the decimal part is optional?

Automata Tutor
WWW.automatatutor.com

e A website for learning automata
e We have posted some exercises for you to try.
e Create an account for yourself

e Register to the course
— Course Id: 23EPFL-CL
— Password: GHL2AQ3|

Exercise

e Design a DFA which accepts all strings in {a, b}* that has an
even length

Exercise

e Construct an automaton that recognizes all strings over {a, b}
that contain "aba" as a substring

Exercise

e Construct an automaton that recognizes all strings over { a,b}
that contain "aba" as a substring and is of even length

Exercise

e Design a DFA which accepts all the numbers written in binary
and divisible by 2. For example, your automaton should
accept the words 0, 10, 100, 110...

Exercise

Design a DFA which accepts all the numbers written in binary
and divisible by 3. For example your automaton should accept
the words 0, 11, 110, 1001, 1100 ...

Can you generalize this to any divisor ‘n’ ?
Can you generalize this to any base ‘b’ ?

Kinds of Finite State Automata

Deterministic FA (DFA): 8 is a function : (Q,X) - Q
Non-deterministic FA (NFA): 0 could be a relation

In NFA there is no unique next state. We have a set of
possible next states.

Undefined Transitions

ab

O
e i

b
>0 —2(1)

e Undefined transitions lead to a sink state from
where no input can be accepted

Epsilon Transitions

ab ab

VR,

e Epsilon transitions: traversing them does not
consume anything (empty word)

e More generally, transitions labeled by a word:
traversing such transition consumes that
entire word at a time

Interpretation of Non-Determinism

e For a given word (string), a path in automaton lead to
accepting, another to a rejecting state

e Does the automaton accept in such case?

— yes, if there exists an accepting path in the automaton
graph whose symbols give that word

Exercise

e Construct a NFA that recognizes all strings over {a,b} that
contain "aba" as a substring

NFA Vs DFA

e For every NFA there exists an equivalent DFA that
accepts the same set of strings

e But, NFAs could be exponentially smaller.

e That is, there are NFAs such that every DFA
equivalent to it has exponentially more number of
states

Exercise

e Construct a NFA and a DFA that recognizes all strings
over {a,b,c} that do not contain all the alphabets a, b
and c.

(let’s start with a regular expression)

e Food for thought:

— Can you prove that every DFA for this language will have
exponentially more states than the NFA ?

Regular Expressions and Automata

Theorem:

If L is a set of words, it is describable by a
regular expression iff (if and only if) it is the set
of words accepted by some finite automaton.

Algorithms:
e regular expression =2 automaton (important!)

e automaton =2 regular expression (cool)

Recursive Constructions

e Union

o
> -- 8 -
O G e

e Concatenation

Recursive Constructions

e Star

Exercise: (aa)* | (aaa)™

e Construct an NFA for the regular expression

NFAs to DFAs (Determinisation)

e keep track of a set of all possible states in
which the automaton could be

e view this finite set as one state of new
automaton

NFA to DFA Conversion

Possible states of the DFA: 2¢

Y L0},...{12}, {0,1},{0,12}, ...{12, 12},
1,

{{
{0,1,2}...,{0,1,2....12}}

NFA to DFA Conversion

e Epsilon Closure
e £(0)={0,5,1,2,6}, E(1) ={1}, E(2) ={
e E(q) ={q:116(q,€,q1) }

e DFA: (%,29,qq,6',F")

* qo = E(qp)

* 6'(q',a) = Ugag,eq’ s(q1a.9,)) E (42)
e F'={q'lqg €29 q9'NnF = @)

NFA to DFA Conversion

NFA to DFA Example

Remark: Relations and Functions

e Relation rcBxC
r={... (b,cl), (b,c2),...}
e Corresponding function: f: B -> 2¢
f={..(b,{c1,c2}) ...}
f(b)={c| (b,c) er}
e Given a state, next-state function returns the
set of new states

— for deterministic automaton, the set has exactly 1
element

Clarifications

e what happens if a transition on an alphabet ‘a’
is not defined for a state ‘q’ ?

e 5'({q},a) =0
¢ §'(0,a) =10

e Empty set represents a state in the NFA

e |tis atrap/sink state: a state that has self-
loops for all symbols, and is non-accepting.

Running NFA (without epsilons) in

Scala

def 0(q : State, a : Char) : Set[States] ={ ... }

def 0'(S : Set[States], a : Char) : Set[States] = {
for (g1 <- S, g2 <- 0(qgl,a)) yield g2

}

def accepts(input : MyStream[Char]) : Boolean = {

var S : Set[State] = Set(q0) // current set of states
while (linput.EOF) {

val a = input.current

S =0'(S,a) // next set of states

}
I(S.intersect(finalStates).isEmpty)

}

Running NFA in Scala

* Modify this to handle epsilons transitions.

def 0(q : State, a : Char) : Set[States] ={ ... }
def 0'(S : Set[States], a : Char) : Set[States] = {
for (g1 <-S, g2 <-90(gl,a))

for(q <- 0(g2, €)) vield g

Minimizing DFAs

e Merge equivalent states.

- qo and gqare equivalent iff there is no
distinguishing string

- 6(q0,2) EF © 6(qq,2) €EF
— Corollary of Myhill-Nerode Theorem

e Final and non-final states are not equivalent
as € distinguishes them

Minimizing DFAs: Procedure

e Maintain a partition A of states

e Every set in the partition has a different
behavior i.e, they have a distinguishing string

e States within a partition may or may not be
equivalent

e Initially, we have (F, Q- F)

L)

Minimizing DFAs: Procedure

A: {0,2,3,4,6} {1,5}
split based on {0,2,3,4,6}

- A:{0,4,6} {2,3} {1,5}

split based on {2,3}

— A:{0,4,6} {2,3} {1}{5}
split based on {1}

- A:{0,6}{4}{2,3} {1} {5} {6}
split based on {4}

— A:{0,6} {4} {2} {3} {1} {5} 16}

Minimizing DFAs: Procedure

e The minimal DFA is unique (up to
isomorphism)

e Implication of Myhill-Nerode theorem
e fFood For Thought: Can we minimize NFA ?

Exercise

Convert the following NFAs to deterministic finite automata.

Properties of Automatons

e Complement: (£*\ L(A))

— switch accepting and non-accepting states in
deterministic automaton

— Does not work for non-deterministic automatons
e Intersection: L(A;) N L(A4,)

- (2,01 X Q2,(q0,95),68', Fy X F)
- 5,((('11' QZ)' Cl) — 5(611: Cl) X 5(%» Cl)

Properties of Automatons

Intersection:

— complement union of complements

Set difference: intersection with complement
Inclusion: emptiness of set difference
Equivalence: two inclusions

Exercise

e Design a DFA which accepts all the numbers written in binary
and divisible by 6. For example your automaton should accept
the words 0, 110 (6 decimal) and 10010 (18 decimal).

Exercise: first, nullable

e For each of the following languages find the
first set. Determine if the language is nullable.

— (alb)* (b|d) ((c|a]d)* | a*)

— language given by automaton:

) b .)/a_ﬁ \
— . "“a:f*-"—u
3 “4)

Automated Construction of Lexers

letry, r,, ..., r,be regular expressions for token classes
consider combined regular expression: (r; | r, | ... | 1)

recursively map a regular expression to a non-deterministic
automaton

eliminate epsilon transitions and determinize
optionally minimize A, to reduce its size 2 A,

the result only checks that input can be split into tokens,
does not say how to split it

From (r,|r,]|...|r,) to a Lexer

e For each accepting state of r, specify the token
class i being recognized

e Longest match rule: remember last token and
input position for a last accepted state

e When no accepting state can be reached
(effectively: when we are in a trap state)
— revert position to last accepted state
— return last accepted token

e Why can’t we simply use (r,[r,[...[r,)* ?

Exercise

Build lexical analyzer for the following two
tokens using longest match. The first token class
has a higher priority:

binaryDigit ::= (z|1)”

ternaryDigit ::= (0]1]2)"

11112102121 -

Realistic Exercise: Integer Literals of
Scala

e [nteger literals are in three forms in Scala: decimal,
hexadecimal and octal. The compiler discriminates different
classes from their beginning.

— Decimal integers are started with a non-zero digit.

— Hexadecimal numbers begin with Ox or 0X and may
contain the digits from 0 through 9 as well as upper or
lowercase digits from A to F.

— If the integer number starts with zero, it is in octal
representation so it can contain only digits O through 7.

— | or L at the end of the literal shows the number is Long.

e Draw a single DFA that accepts all the allowable integer
literals.

e Write the corresponding regular expression.

Exercise

e Let L be the language of strings over {<, =}
defined by regexp (<|=| <====%*). That is,
L contains <,=, and words <=" for n >= 3.

e Construct a DFA that accepts L

e Describe how the lexical analyzer will tokenize
the following inputs.

More Questions

e For which of the following languages can you
find an automaton or regular expression:

— Sequence of open or closed parentheses of even

length? E.g. (), ((,)), JO))(, -
— as many digits before as after decimal point?

— Sequence of balanced parentheses
((() () -balanced
())(() - not balanced

— Comments from // until LF
— Nested comments like /* ... /* */ .. */

