Automating Construction of Lexers

Example in javacc

```
TOKEN: {
    <IDENTIFIER: <LETTER> (<LETTER> | <DIGIT> | "_")* >
    | <INTLITERAL: <DIGIT> (<DIGIT>)* >
    <LETTER: ["a"-"z"] | ["A"-"Z"]>
    <DIGIT: ["0"-"9"]>
}
SKIP: \{
" " | "\n" | "\t"
\}
```

--> get automatically generated code for lexer!
But how does javacc do it?

A Recap:

Simple RE to Programs

Regular Expression

- a
- r1 r2
- (r1|r2)

Code

- if (current=a) next else error
- (code for r1) ;
(code for r2)
- if (current in first(r1)) code for r1
else code for r2
- while(current in first(r)) code for r

Regular Expression to Programs

- How can we write a lexer for (a*b|a) ?
- aaaab Vs aaaaa

Finite Automaton (Finite State Machine)

- $A=\left(\Sigma, Q, q_{0}, \delta, F\right)$

$$
\delta \subseteq Q \times \Sigma \times Q,
$$

$$
q_{0} \in Q,
$$

$$
F \subseteq Q
$$

$$
q_{0} \in Q
$$

$$
q_{1} \subseteq Q
$$

$$
\delta=\left\{\left(q_{0}, a, q_{1}\right),\left(q_{0}, a, q_{0}\right)\right.
$$

- Σ - alphabet $\left.\left(q_{1}, a, q_{1}\right),\left(q_{1}, b, q_{1}\right)\right\}$
- Q - states (nodes in the graph)
- q_{0} - initial state (with '->' sign in drawing)
- δ - transitions (labeled edges in the graph)
- F - final states (double circles)

Numbers with Decimal Point

digit digit*. digit digit*
What if the decimal part is optional?

Automata Tutor

www.automatatutor.com

- A website for learning automata
- We have posted some exercises for you to try.
- Create an account for yourself
- Register to the course
- Course Id: 23EPFL-CL
- Password: GHL2AQ3I

Exercise

- Design a DFA which accepts all strings in $\{a, b\}^{*}$ that has an even length

Exercise

- Construct an automaton that recognizes all strings over $\{a, b\}$ that contain "aba" as a substring

Exercise

- Construct an automaton that recognizes all strings over $\{\mathrm{a}, \mathrm{b}\}$ that contain "aba" as a substring and is of even length

Exercise

- Design a DFA which accepts all the numbers written in binary and divisible by 2. For example, your automaton should accept the words 0, 10, 100, 110...

Exercise

- Design a DFA which accepts all the numbers written in binary and divisible by 3. For example your automaton should accept the words 0, 11, 110, 1001, 1100 ...
- Can you generalize this to any divisor ' n ' ?
- Can you generalize this to any base 'b' ?

Kinds of Finite State Automata

- Deterministic FA (DFA): δ is a function : $(Q, \Sigma) \mapsto Q$
- Non-deterministic FA (NFA): δ could be a relation
- In NFA there is no unique next state. We have a set of possible next states.

Undefined Transitions

- Undefined transitions lead to a sink state from where no input can be accepted

Epsilon Transitions

- Epsilon transitions: traversing them does not consume anything (empty word)
- More generally, transitions labeled by a word: traversing such transition consumes that entire word at a time

Interpretation of Non-Determinism

- For a given word (string), a path in automaton lead to accepting, another to a rejecting state
- Does the automaton accept in such case?
- yes, if there exists an accepting path in the automaton graph whose symbols give that word

Exercise

- Construct a NFA that recognizes all strings over $\{\mathrm{a}, \mathrm{b}\}$ that contain "aba" as a substring

NFA Vs DFA

- For every NFA there exists an equivalent DFA that accepts the same set of strings
- But, NFAs could be exponentially smaller.
- That is, there are NFAs such that every DFA equivalent to it has exponentially more number of states

Exercise

- Construct a NFA and a DFA that recognizes all strings over $\{a, b, c\}$ that do not contain all the alphabets a, b and c .
(let's start with a regular expression)
- Food for thought:
- Can you prove that every DFA for this language will have exponentially more states than the NFA ?

Regular Expressions and Automata

Theorem:
If L is a set of words, it is describable by a regular expression iff (if and only if) it is the set of words accepted by some finite automaton.

Algorithms:

- regular expression \rightarrow automaton (important!)
- automaton \rightarrow regular expression (cool)

Recursive Constructions

- Union

- Concatenation

Recursive Constructions

- Star

Exercise: (aa)* | (aaa)*

- Construct an NFA for the regular expression

NFAs to DFAs (Determinisation)

- keep track of a set of all possible states in which the automaton could be
- view this finite set as one state of new automaton

NFA to DFA Conversion

Possible states of the DFA: 2^{Q}
$\{\},\{0\}, \ldots\{12\},\{0,1\}, \ldots,\{0,12\}, \ldots\{12,12\}$, $\{0,1,2\} \ldots,\{0,1,2 \ldots, 12\}\}$

NFA to DFA Conversion

- Epsilon Closure
- $\mathrm{E}(0)=\{0,5,1,2,6\}, \mathrm{E}(1)=\{1\}, \mathrm{E}(2)=\{$
- $E(q)=\left\{q_{1} \mid \delta\left(q, \epsilon, q_{1}\right)\right\}$
- NFA: $\left(\Sigma, 2^{Q}, q_{0}^{\prime}, \delta^{\prime}, F^{\prime}\right)$
- $q_{0}^{\prime}=E\left(q_{0}\right)$
- $\delta^{\prime}\left(q^{\prime}, a\right)=\bigcup_{\left\{\exists q_{1} \in q^{\prime}, \delta\left(q_{1}, a, q_{2}\right)\right\}} E\left(q_{2}\right)$
- $F^{\prime}=\left\{q^{\prime} \mid q^{\prime} \in 2^{Q}, q^{\prime} \cap F \neq \varnothing\right\}$

NFA to DFA Conversion

NFA to DFA Example

Remark: Relations and Functions

- Relation $r \subseteq B \times C$

$$
r=\{\ldots,(b, c 1),(b, c 2), \ldots\}
$$

- Corresponding function: $\mathrm{f}: \mathrm{B}$-> 2^{C}

$$
\begin{aligned}
f & =\{\ldots(b,\{c 1, c 2\}) \ldots\} \\
f(b) & =\{c \mid(b, c) \in r\}
\end{aligned}
$$

- Given a state, next-state function returns the set of new states
- for deterministic automaton, the set has exactly 1 element

Clarifications

- what happens if a transition on an alphabet ' a ' is not defined for a state ' q ' ?
- $\delta^{\prime}(\{q\}, a)=\varnothing$
- $\delta^{\prime}(\emptyset, a)=\varnothing$
- Empty set represents a state in the NFA
- It is a trap/sink state: a state that has selfloops for all symbols, and is non-accepting.

Running NFA (without epsilons) in

Scala

$\operatorname{def} \delta(q:$ State, $a: C h a r): \operatorname{Set}[S t a t e s]=\{\ldots\}$ $\operatorname{def} \delta^{\prime}(S: \operatorname{Set}[S t a t e s]$, a : Char) : Set[States] = \{
for (q1 <-S, q2 <- $\delta(q 1, a)$) yield q2 \}
def accepts(input : MyStream[Char]) : Boolean = \{
var S : Set[State] = Set(q0) // current set of states
while (!input.EOF) \{
val a = input.current
$S=\delta^{\prime}(S, a) \quad / /$ next set of states
\}
!(S.intersect(finalStates).isEmpty)

Running NFA in Scala

- Modify this to handle epsilons transitions.
$\operatorname{def} \delta(q:$ State, $a:$ Char $): \operatorname{Set}[$ States $]=\{\ldots\}$ def $\delta^{\prime}(S: S e t[S t a t e s]$, a : Char) : Set[States] = \{
for (q1 <-S, q2 <- $\delta(q 1, a)$)
for $(q<-\delta(q 2, \epsilon))$ yield q
\}

Minimizing DFAs

- Merge equivalent states.
- q_{0} and q_{1} are equivalent iff there is no distinguishing string
$-\hat{\delta}\left(q_{0}, z\right) \in F \Leftrightarrow \hat{\delta}\left(q_{1}, z\right) \in F$
- Corollary of Myhill-Nerode Theorem
- Final and non-final states are not equivalent as ϵ distinguishes them

Minimizing DFAs: Procedure

- Maintain a partition A of states
- Every set in the partition has a different behavior i.e, they have a distinguishing string
- States within a partition may or may not be equivalent
- Initially, we have (F, Q - F)

Minimizing DFAs: Procedure

- split based on $\{0,2,3,4,6\}$

$$
-A:\{0,4,6\}\{2,3\} \quad\{1\}\{5\}
$$

- split based on $\{1\}$

$$
\text { - A: }\{0,6\}\{4\}\{2,3\}\{1\}\{5\}\{6\}
$$

- split based on $\{4\}$

$$
\text { - A: }\{0,6\}\{4\}\{2\}\{3\}\{1\}\{5\}\{6\}
$$

Minimizing DFAs: Procedure

- The minimal DFA is unique (up to isomorphism)
- Implication of Myhill-Nerode theorem
- Food For Thought: Can we minimize NFA ?

Exercise

Convert the following NFAs to deterministic finite automata.
a)

b)

Properties of Automatons

- Complement: ($\left.\Sigma^{*} \backslash L(A)\right)$
- switch accepting and non-accepting states in deterministic automaton
- Does not work for non-deterministic automatons
- Intersection: $L\left(A_{1}\right) \cap L\left(A_{2}\right)$
- $\left(\Sigma, Q_{1} \times Q_{2},\left(q_{0}^{1}, q_{0}^{2}\right), \delta^{\prime}, F_{1} \times F_{2}\right)$
$-\delta^{\prime}\left(\left(q_{1}, q_{2}\right), a\right)=\delta\left(q_{1}, a\right) \times \delta\left(q_{2}, a\right)$

Properties of Automatons

- Intersection:
- complement union of complements
- Set difference: intersection with complement
- Inclusion: emptiness of set difference
- Equivalence: two inclusions

Exercise

- Design a DFA which accepts all the numbers written in binary and divisible by 6. For example your automaton should accept the words 0, 110 (6 decimal) and 10010 (18 decimal).

Exercise: first, nullable

- For each of the following languages find the first set. Determine if the language is nullable.
$-(a \mid b)^{*}(b \mid d)\left((c|a| d)^{*} \mid a^{*}\right)$
- language given by automaton:

Automated Construction of Lexers

- let $r_{1}, r_{2}, \ldots, r_{n}$ be regular expressions for token classes
- consider combined regular expression: $\left(r_{1}\left|r_{2}\right| \ldots \mid r_{n}\right)$
- recursively map a regular expression to a non-deterministic automaton
- eliminate epsilon transitions and determinize
- optionally minimize A_{3} to reduce its size $\rightarrow A_{4}$
- the result only checks that input can be split into tokens, does not say how to split it

From $\left(r_{1}\left|r_{2}\right| \ldots \mid r_{n}\right)$ to a Lexer

- For each accepting state of r_{i} specify the token class i being recognized
- Longest match rule: remember last token and input position for a last accepted state
- When no accepting state can be reached (effectively: when we are in a trap state)
- revert position to last accepted state
- return last accepted token
- Why can't we simply use $\left(r_{1} \mid r_{2} / \ldots / r_{n}\right)^{*}$?

Exercise

Build lexical analyzer for the following two tokens using longest match. The first token class has a higher priority:
binaryDigit ::=(z|1)*
ternaryDigit ::= $0|1| 2)^{*}$

1111z1021z1 \rightarrow

Realistic Exercise: Integer Literals of

Scala

- Integer literals are in three forms in Scala: decimal, hexadecimal and octal. The compiler discriminates different classes from their beginning.
- Decimal integers are started with a non-zero digit.
- Hexadecimal numbers begin with 0x or OX and may contain the digits from 0 through 9 as well as upper or lowercase digits from A to F.
- If the integer number starts with zero, it is in octal representation so it can contain only digits 0 through 7.
- I or L at the end of the literal shows the number is Long.
- Draw a single DFA that accepts all the allowable integer literals.
- Write the corresponding regular expression.

Exercise

- Let L be the language of strings over $\{<,=\}$ defined by regexp (<|=| <====*). That is, L contains $<,=$, and words $<={ }^{n}$ for $n>=3$.
- Construct a DFA that accepts L
- Describe how the lexical analyzer will tokenize the following inputs.

1) <=====
2) $==<==<==<==<==$
3) <=====<

More Questions

- For which of the following languages can you find an automaton or regular expression:
- Sequence of open or closed parentheses of even length? E.g. (), ((,)),)()))(, ...
- as many digits before as after decimal point?
- Sequence of balanced parentheses
((()) ()) - balanced
()) (() -not balanced
- Comments from // until LF
- Nested comments like /* ... /* */ ... */

