
Code Generation through
Passing Jump Targets

Code Compiled with javac static int k = 0;

static boolean action(int si,
 boolean ob,
 int sm, int pr) {

 if (sm + 2*pr > 10 &&

 !(si <= 5 && ob)) {

 k++; return true;

 } else {

 return false;

 } }

Compared to our current translation:

if 'sm+2*pr > 10' false, immediately ireturns

if 'si > 5' is true, immediately goes to 'then' part

no intermediate result for if condition - do
branches directly

negation sign eliminated and pushed through

only one iconst_0 and one iconst_1

 0: iload_2

 1: iconst_2

 2: iload_3

 3: imul

 4: iadd

 5: bipush 10

 7: if_icmple 29

 10: iload_0

 11: iconst_5

 12: if_icmpgt 19

 15: iload_1

 16: ifne 29

 19: getstatic #2; //Field k

 22: iconst_1

 23: iadd

 24: putstatic #2; //Field k

 27: iconst_1

 28: ireturn

 29: iconst_0

 30: ireturn

Translate This While Loop
using Rules that Explicitly Put Booleans on Stack

static void count(int from,
 int to,
 int step) {

 int counter = from;

 while (counter < to) {

 counter = counter + step;

 }

}

nbegin: iload #counter

 iload #to

 if_icmplt ntrue

 iconst_0

 goto nafter

ntrue: iconst_1

nafter: ifeq nexit

 iload #counter

 iload #step

 iadd

 istore #counter

 goto nbegin

nexit:

Towards More Efficient Translation

Macro ‘branch’ instruction

Introduce an imaginary big instruction

branch(c,nTrue,nFalse)

Here

 c is a potentially complex Java boolean expression,
 that is the main reason why branch is not a real instruction

 nTrue is label to jump to when c evaluates to true

 nFalse is label to jump to when c evaluates to false

 no “fall through” – always jumps (symmetrical)

We show how to:

• use branch to compile if, while, etc.

• expand branch recursively into concrete bytecodes

Using branch in Compilation

[if (c) t else e] = [while (c) s] =

nTrue: [t]

 goto nAfter

nFalse: [e]

nAfter:

 branch(c,nTrue,nFalse)
test: branch(c,body,exit)

body: [s]

 goto test

exit:

Decomposing branch

branch(!c,nThen,nElse) =

branch(c1 && c2,nThen,nElse) =

branch(c1 || c2,nThen,nElse) =

branch(true,nThen,nElse) =

branch(false,nThen,nElse) =

boolean var b with slot N

 branch(b,nThen,nElse) =

 branch(c,nElse,nThen)

 branch(c1,nNext,nElse)

 nNext: branch(c2,nThen,nElse)

 branch(c1,nThen,nNext)

 nNext: branch(c2,nThen,nElse)

 goto nThen

 goto nElse

iload_N

ifeq nElse

goto nThen

Compiling Relations

branch(e1 R e2,nThen,nElse) =

 [e1]

 [e2]

 if_icmpR nThen

 goto nElse

R can be <,>,==,!=,<=,>=,...

Putting boolean variable on the stack

Consider storing x = c

where x,c are boolean and c has &&, ||

How to put result of branch on stack to allow istore?

[b = c] = branch(c,nThen,nElse)

nThen: iconst_1

 goto nAfter

nElse: iconst_0

nAfter: istore #b

Compare Two Translations
of This While Loop

while (counter < to) {

 counter = counter + step;

 }

nbegin: iload #counter

 iload #to

 if_icmplt ntrue

 iconst_0

 goto nafter

ntrue: iconst_1

nafter: ifeq nexit

 iload #counter

 iload #step

 iadd

 istore #counter

 goto nbegin

nexit:

old one:
test: iload #counter

 iload #to

 if_icmplt body

 goto exit

body: iload #counter

 iload #step

 iadd

 istore #counter

 goto test

exit:

new one:

Complex Boolean Expression: Example

Generate code for this:

if ((x < y)&& !((y < z) && ok))

 return

else
 y = y + 1

This would be much

longer with
old translation.

 branch(x<y,n1,else)

n1: branch(y<z,n2,then)

n2: branch(ok,else,then)

then: return

 goto after

else: iload #y

 iconst_1
 iadd

 istore #y

after:

Implementing branch

• Option 1: emit code using branch, then rewrite

• Option 2: branch is a just a function in the
compiler that expands into instructions

 branch(c,nTrue,nFalse)

def compileBranch(c:Expression,
 nTrue : Label, nFalse : Label) : List[Bytecode] =

{ … }

The function takes two destination labels.

More Complex Control Flow

Destination Parameters in Compilation

• To compilation functions […] pass a label to which
instructions should jump after they finish.

– No fall-through

[x = e] after = // new parameter 'after'

 [e]

 istore #x

 goto after // at the end jump to it

[s1 ; s2] after =

 [s1] freshL

 freshL: [s2] after
we could have any junk in here
because ([s1] freshL) ends in a jump

Translation of if, while, return
with one 'after' parameter

[if (c) t else e] after =

nTrue: [t] after

nFalse: [e] after

 branch(c,nTrue,nFalse)

test: branch(c,body,after)

body: [s] test

[while (c) s] after =

[return exp] after =

 [exp]
 ireturn

Generated Code for Example

[if (x < y) return; else y = 2;] after =

 iload #x

 iload #y

 if_icmp_lt nTrue

 goto nFalse

nTrue: return

nFalse: iconst_2

 istore #y

 goto after

Note: no goto after return because

– translation of 'if' does not generate goto as it did before, since it
passes it to the translation of the body

– translation of 'return' knows it can ignore the 'after' parameter

break statement

A common way to exit from a loop is to use a 'break' statement e.g.

while (true) {

 code1

 if (cond) break

 cond2

}

Consider a language that has expressions, assignments, the {…}
blocks, 'if' statements, while, and a 'break' statement.
The 'break' statement exits the innermost loop and can appear
inside arbitrarily complex blocks and if conditions.
How would translation scheme for such construct look like?

Two Destination Parameters

[s1 ; s2] after brk =

 [s1] freshL brk

 freshL: [s2] after brk

[x = e] after brk =

 [e]

 istore #x

 goto after

[return exp] after =

 [exp]
 ireturn

[break] after brk =

 goto brk

[while (c) s] after brk =

test: branch(c,body,after)
body: [s] test after

this is where the second
parameter gets bound to
the exit of the loop

if with two parameters

[if (c) t else e] after brk =

nTrue: [t] after brk

nFalse: [e] after brk

 branch(c,nTrue,nFalse)

break and continue statements?
Three parameters!

[break] after brk cont =
 goto brk

[continue] after brk cont =
 goto cont

[while (c) s] after brk cont =
test: branch(c,body,after)
body: [s] test after test

Some High-Level Instructions for JVM

Method Calls

Invoking methods (arguments pushed onto stack)

 invokestatic

 invokevirtual

Returning value from methods:

 ireturn – take integer from stack and return it

 areturn – take reference from stack and return it

 return – return from a method returning ‘void’

invokestatic
invokestatic

indexbyte1

indexbyte2

..., [arg1, [arg2 ...]] → ...

The unsigned indexbyte1 and indexbyte2 are used to construct

an index into the run-time constant pool of the current class
(§2.6), where the value of the index is

(indexbyte1 << 8) | indexbyte2. The run-time constant pool
item at that index must be a symbolic reference to a method
(§5.1), which gives the name and descriptor (§4.3.3) of the
method as well as a symbolic reference to the class in which the
method is to be found. The named method is resolved (§5.4.3.3).
The resolved method must not be an instance initialization
method (§2.9) or the class or interface initialization method
(§2.9). It must be static, and therefore cannot be abstract.

On successful resolution of the method, the class that declared
the resolved method is initialized (§5.5) if that class has not
already been initialized.

The operand stack must contain nargs argument values, where
the number, type, and order of the values must be consistent with
the descriptor of the resolved method.

If the method is synchronized, the monitor associated with the
resolved Class object is entered or reentered as if by execution of
a monitorenter instruction (§monitorenter) in the current thread.

If the method is not native, the nargs argument values are
popped from the operand stack. A new frame is created
on the Java Virtual Machine stack for the method being
invoked. The nargs argument values are consecutively
made the values of local variables of the new frame,
with arg1 in local variable 0 (or, if arg1 is of type long or
double, in local variables 0 and 1) and so on. Any
argument value that is of a floating-point type undergoes value set
conversion (§2.8.3) prior to being stored in a local variable. The
new frame is then made current, and the Java Virtual Machine pc is
set to the opcode of the first instruction of the method to be
invoked. Execution continues with the first instruction of the
method.

If the method is native and the platform-dependent code that
implements it has not yet been bound (§5.6) into the Java Virtual
Machine, that is done. The nargs argument values are popped from
the operand stack and are passed as parameters to the code that
implements the method. Any argument value that is of a floating-
point type undergoes value set conversion (§2.8.3) prior to being
passed as a parameter. The parameters are passed and the code is
invoked in an implementation-dependent manner. When the
platform-dependent code returns, the following take place:

 If the native method is synchronized, the monitor associated
with the resolved Class object is updated and possibly exited as if
by execution of a monitorexit instruction (§monitorexit) in the
current thread.

 If the native method returns a value, the return value of the
platform-dependent code is converted in an implementation-
dependent way to the return type of the native method and
pushed onto the operand stack.

invokevirtual
invokevirtual

indexbyte1

indexbyte2

..., objectref, [arg1, [arg2 ...]] →...
Description

The unsigned indexbyte1 and indexbyte2 are used to construct an
index into the run-time constant pool of the current class (§2.6),
where the value of the index is (indexbyte1 << 8) | indexbyte2.
The run-time constant pool item at that index must be a symbolic
reference to a method (§5.1), which gives the name and
descriptor (§4.3.3) of the method as well as a symbolic reference
to the class in which the method is to be found. The named
method is resolved (§5.4.3.3). The resolved method must not be
an instance initialization method (§2.9) or the class or interface
initialization method (§2.9). Finally, if the resolved method is
protected (§4.6), and it is a member of a superclass of the current
class, and the method is not declared in the same run-time
package (§5.3) as the current class, then the class of objectref
must be either the current class or a subclass of the current class.

If the resolved method is not signature polymorphic (§2.9), then
the invokevirtual instruction proceeds as follows.

Let C be the class of objectref. The actual method to be invoked is
selected by the following lookup procedure:

 If C contains a declaration for an instance method m that
overrides (§5.4.5) the resolved method, then m is the method to
be invoked, and the lookup procedure terminates.

 Otherwise, if C has a superclass, this same lookup procedure is
performed recursively using the direct superclass of C; the method
to be invoked is the result of the recursive invocation of this
lookup procedure.

 Otherwise, an AbstractMethodError is raised.

The objectref must be followed on the operand stack by nargs
argument values, where the number, type, and order of the values
must be consistent with the descriptor of the selected instance
method.

If the method is synchronized, the monitor associated with
objectref is entered or reentered as if by execution of a
monitorenter instruction (§monitorenter) in the current thread.

If the method is not native, the nargs argument values and
objectref are popped from the operand stack. A new
frame is created on the Java Virtual Machine stack for
the method being invoked. The objectref and the
argument values are consecutively made the values of
local variables of the new frame, with objectref in local
variable 0, arg1 in local variable 1 (or, if arg1 is of type
long or double, in local variables 1 and 2), and so on. Any

argument value that is of a floating-point type undergoes value set
conversion (§2.8.3) prior to being stored in a local variable. The
new frame is then made current, and the Java Virtual Machine pc is
set to the opcode of the first instruction of the method to be
invoked. Execution continues with the first instruction of the
method.

...

Translating Method Calls: Example

[x = objExpr.myMethodName(e1,e2)] =

 [objExpr]
 [e1]

 [e2]

 invokevirtual #13

 istore #x

constant pool area:

 0: "hello, world"

 1:

 ...

13: className.myMethodName/(II)I

 ...

Rule for Method Call Translation

[objExpr.myMethodName(e1,...,en)] =

 [objExpr]
 [e1]

 ...

 [en]

 invokevirtual #constantPoolAddr

Objects and References

ifnull label - consume top-of-stack reference and jump if it is null

ifnonnull label - consume top-of-stack reference, jump if not null

new #className - create fresh object of class pointed to by the offset
 #className in the constant pool
 (does not invoke any constructors)

getfield #field – consume object reference from stack,
 then dereference the field of that object given
 by (field,class) stored in the #field pointer in the constant pool
 and put the value of the field on the stack

putfield #field - consume an object reference obj and a value v
 from the stack and store v it in the #field of obj
“If the field descriptor type is boolean, byte, char, short, or int, then the value must
be an int.”

obj.field= v

obj.field

Array Manipulation

a = reference - “address” arrays

i = int arrays (and some other int-like value types)

Selected array manipulation operations:

 newarray, anewarray, multianewarray – allocate an
 array object and put a reference to it on the stack

 aaload, iaload – take: a reference to array and index from stack
 load the value from array and push it onto the stack

 aastore, iastore – take: a reference to array, an index, a value
 from stack, store the value into the array index

 arraylength – retrieve length of the array

Java arrays store the size of the array and its time, which enables
run-time checking of array bounds and object types.

There are Floating Point Operations…
• fadd

• faload (for floating point arrays)

• fastore (for floating point arrays)

• fcmp<op>

• fconst_<f>

• fdiv

• fload

• fload_<n>

• fmul

• fneg

• frem

• freturn

• fstore

• fstore_<n>

• fsub

When needed,
READ THE JVM Spec

Your

Compiler

Java Virtual Machine
(JVM) Bytecode

i=0
while (i < 10) {
 a[i] = 7*i+3
 i = i + 1 }

source code
simplified Java-like
language

 21: iload_2
 22: iconst_2
 23: iload_1
 24: imul
 25: iadd
 26: iconst_1
 27: iadd
 28: istore_2

Covered!

i
=
0
LF

w
h
i
l
e

i
=
0

while
(
i
<

10
)

lexer

characters words trees

parser

assign

while

i 0

+

*
3

7 i

assign
a[i]

<

i 10

code gen
type
check

