Soundness of Types

Ensuring that a type system is not broken

Example: Tootool 0.1 Language

Tootool is a rural community in the central east part of the Riverina [New South Wales, Australia]. It is situated by road, about 4 kilometres east from French Park and 16 kilometres west from The Rock.

Tootool Post Office opened on 1 August 1901 and closed in 1966. [Wikipedia]

unsound

Type System for Tootool 0.1

```
Pos <: Int
```

Neg <: Int

does it type check?

var p : Pos

var q : Neg

varr: Pos

$$q = -5$$

$$p = q$$

$$\Gamma = \{(p, Pos), (q, Neg), (r, Pos), (intSqrt, Pos \rightarrow Pos)\}$$

r = intSqrt(p)

Runtime error: intSqrt invoked with a negative argument!

What went wrong in *Tootool 0.1*?

Pos <: Int

Neg <: Int

does it type check? - yes
def intSqrt(x:Pos) : Pos = { ...}

var p : Pos

var q : Neg

var r : Pos

$$q = -5$$

$$p = q$$

$$\Gamma = \{(p, Pos), (q, Neg), (r, Pos), (intSqrt, Pos \rightarrow Pos)\}$$

$$r = intSqrt(p)$$

Runtime error: intSqrt invoked with a negative argument!

x must be able to store any value from T value from T $\frac{? \quad \Gamma \vdash e \colon T}{\Gamma \vdash (x = e) \colon void}$

Cannot use $\Gamma \vdash e: T$ to mean "x promises it can store any $e \in T$ "

Recall Our Type Derivation

Pos <: Int

Neg <: Int

$$\frac{\Gamma \vdash x \colon T \qquad \Gamma \vdash e \colon T}{\Gamma \vdash (x = e) \colon void} \quad \text{assignment}$$

$$\frac{\Gamma \vdash e \colon T \qquad \Gamma \vdash T <\colon T'}{\Gamma \vdash e \colon T'} \quad \text{subtyping}$$

does it type check? – yes

def intSqrt(x:Pos) : Pos = { ...}

var p : Pos

var q : Neg

var r : Pos

$$q = -5$$

 $p = q$
 $i = \{(p, Pos), (q, Neg), (r, Pos), (intSqrt, Pos $\rightarrow Pos)\}$$

r = intSqrt(p)

Runtime error: intSqrt invoked with a negative argument!

Values from p are integers. But p did not promise to store all kinds of integers/ Only positive ones!

q: NegNeg <: Int</th>q: Int

(p=q): void

Corrected Type Rule for Assignment

Pos <: Int

Neg <: Int

does it type check?

def intSqrt(x:Pos) : Pos = { ...}

var p : Pos

var q : Neg

var r : Pos

$$q = -5$$

 $p = q$
 $i = \{(p, Pos), (q, Neg), (r, Pos), (intSqrt, Pos $\rightarrow Pos)\}$
 $r = intSqrt(p)$$

does not type check

x must be able to store any value from T

$$\frac{(x,T) \in \Gamma \quad \Gamma \vdash e: T}{\Gamma \vdash (x = e): \text{ void}}$$

e can have any value from T

 Γ stores declarations (promises)

Corrected Type Rule for Assignment

Pos <: Int

Neg <: Int

does it type check?

def intSqrt(x:Pos) : Pos = { ...}

var p : Pos

var q : Neg

var r : Pos

q = -5p = q $i = \{(p, Pos), (q, Neg), (r, Pos), (intSqrt, Pos <math>\rightarrow Pos)\}$ r = intSqrt(p)

does not type check

Is there another way to fix the type system?

How could we ensure that some other programs will not break?

Type System Soundness

Proving Soundness of Type Systems

- Goal of a sound type system:
 - if a program type checks, it never "crashes"
 - crash = some precisely specified bad behavior
 e.g. invoking an operation with a wrong type
 - dividing a string by another string: "cat" / "frog"
 - trying to *multiply* a Window object by a File object
 - e.g. dividing an integer by zero
- Never crashes: no matter how long it executes
 - proof is done by induction on program execution

Proving Soundness by Induction

- Program moves from state to state
- Bad state = state where program is about to exhibit a bad operation ("cat" / "frog")
- Good state = state that is not bad
- To prove:
 program type checks → states in all executions are good
- Usually need a stronger inductive hypothesis;
 some notion of very good (VG) state such that:
 program type checks → program's initial state is very good
 state is very good → next state is also very good
 state is very good → state is good (not about to crash)

A Simple Programming Language

var x : Pos

var y: Int

var z : Pos

x = 3

position in source

y = -5

z = 4

x = x + z

y = x / z

z = z + x

Initially, all variables have value 1

values of variables:

x = 1

y = 1

z = 1

var x : Pos

var y : Int

var z : Pos

$$x = 3$$

y = -5 position in source

$$z = 4$$

$$x = x + z$$

$$y = x / z$$

$$z = z + x$$

$$x = 3$$

$$y = 1$$

$$z = 1$$

position in source

var x : Pos

var y : Int

var z : Pos

$$x = 3$$

$$y = -5$$

z = 4

x = x + z

y = x / z

z = z + x

$$x = 3$$

$$y = -5$$

$$z = 1$$

var x : Pos

var y : Int

var z : Pos

$$x = 3$$

$$y = -5$$

$$z = 4$$

$$X = X + Z$$

position in source

$$y = x / z$$

$$z = z + x$$

$$x = 3$$

$$y = -5$$

$$z = 4$$

position in source

var x : Pos

var y : Int

var z : Pos

$$x = 3$$

$$y = -5$$

$$z = 4$$

$$x = x + z$$

$$y = x / z$$

z = z + x

$$x = 7$$

$$y = -5$$

$$z = 4$$

```
var x : Pos
var y : Int
var z : Pos
x = 3
y = -5
z = 4
x = x + z
y = x / z
z = z + x
position in source
```

values of variables:

$$x = 7$$

$$y = 1$$

$$z = 4$$

formal description of such program execution is called operational semantics

Operational semantics

Operational semantics gives meaning to programs by describing how the program state changes as a sequence of steps.

 Small-step Operational Semantics (SOS): consider individual steps (e.g. z = x + y)

V: set of variables in the program

pc: integer variable denoting the program counter

g: $V \rightarrow Int$ function giving the values of program variables

(g, pc) program state

Then, for each possible statement in the program we define how it changes the program state.

Big-step semantics: consider the effect of entire blocks

Operational semantics

Operation semantics

- If pc: z = x + y, $(g, pc) \rightarrow (g', pc + 1)$, where $g' = g[z \mapsto g(x)+g(y)]$
- If pc: z = x, $(g, pc) \rightarrow (g', pc + 1)$, where $g' = g[z \mapsto g(x)]$

Type Rules of Simple Language

Programs:

 $var x_1 : Pos$ $var x_2 : Int$

 $var x_n : Pos$

variable declarations var x: Pos (strictly positive)

or

var x: Int

followed by

 $x_i = x_i$ $x_p = x_q + x_r$

 $x_{p} = x_{q} + x_{r}$ $x_{q} = x_{q} + x_{r}$

statements of one of the forms

Type rules:

$$\Gamma = \{ (x_1, Pos), (x_2, Int), \}$$

 (x_n, Pos)

Pos <: Int

$$\frac{(x,T) \in \Gamma \qquad \Gamma \vdash e : T}{\Gamma \vdash (x=e) : void}$$

$$\frac{\Gamma \vdash x : T \qquad T <: T'}{\Gamma \vdash x : T'}$$

$$\frac{(x,T) \in \Gamma}{\Gamma \vdash x : T} \quad \frac{e_1 : Int}{e_1 + e_2 : Int}$$

(No complex expressions)

k: Pos -k: Int

Bad State: About to Divide by Zero (Crash)

```
var x : Pos
var y : Int
var z : Pos
x = 1
y = -1
z = x + y
x = x + z
y = x / z
z = z +
values of
x = 1
y = -1
z = 0
```

values of variables:

Definition: state is *bad* if the next instruction is of the form $x_i = x_j / x_k$ and x_k has value 0 in the current state.

Good State: Not (Yet) About to Divide by Zero

Definition: state is good if it is not bad.

Definition: state is *bad* if the next instruction is of the form $x_i = x_j / x_k$ and x_k has value 0 in the current state.

Good State: Not (Yet) About to Divide by Zero

Definition: state is good if it is not bad.

Definition: state is *bad* if the next instruction is of the form $x_i = x_j / x_k$ and x_k has value 0 in the current state.

Moved from Good to Bad in One Step!

Being good is not preserved by one step, not inductive! It is very local property, does not take future into account.

 $\begin{array}{l} \text{var } x : \text{Pos} \\ \text{var } y : \text{Int} \\ \text{var } z : \text{Pos} \\ \text{x} = 1 \\ \text{y} = -1 \\ \text{z} = x + y \\ \text{x} = x + z \\ \text{y} = x / z \end{array} \qquad \begin{array}{l} \text{values of variables:} \\ \text{x} = 1 \\ \text{y} = -1 \\ \text{z} = 0 \end{array}$

Definition: state is *good* if it is not *bad*.

Definition: state is *bad* if the next instruction is of the form $x_i = x_i / x_k$ and x_k has value 0 in the current state.

Being Very Good: A Stronger Inductive Property

Pos =
$$\{1, 2, 3, ...\}$$

Definition: state is *good* if it is not about to divide by zero.

Definition: state is *very good* if each variable belongs to the domain determined by its type (if z:Pos, then z is strictly positive).

Proving Soundness - Intuition

We want to show if a program type checks:

- It will be very good at the start
- if it is very good in the current step, it will remain very good in the next step
- If it is very good, it will not crash

Hence, please type check your program, and it will never crash!

Soundnes proof = defining "very good" and checking the properties above.

Proving Soundness in Our Case

Holds: in initial state, variables are =1

- If a program *type checks*:
 - $\sqrt{}$ It will be *very good* from at start.
- 1 ∈ Pos 1 ∈ Int
- if it is very good in the current step, it will remain very good in the next
- \checkmark If it is *very good*, it will not *crash*.

If next state is x / z, type rule ensures z has type Pos Because state is very good, it means $z \in Pos$ so z is not 0, and there will be no crash.

Definition: state is *very good* if each variable belongs to the domain determined by its type (if z:Pos, then z is strictly positive).

Proving that "very goodness" is preserved by state transition

- How do we prove
 - if you are very good, then you will remain very good in the next step
 - Irrespective of the actual program
- We could use SOS small step operational semantics here.

Proving that "very goodness" is preserved by state transition

Hypothesize that g is very good

Prove that g' is very good When the program type checks

 Do this for every possible "step" of the operational semantics

Proving this for our little type system

Hypothesize that the following holds in g

For all vars x, x:Pos => x is strictly positive

Prove that the following holds in g'

For all vars x, x:Pos => x is strictly positive

$$\forall x. \Gamma \vdash x : Pos \Rightarrow g'(x) > 0$$

- Can we prove this?
 - Only if we are given that the program type checks

Recall the Type Rules

Pos <: Int

$$\frac{(x,T) \in \Gamma \qquad \Gamma \vdash e : T}{\Gamma \vdash (x=e) : void}$$

$$\frac{\Gamma \vdash x : T \qquad T <: T'}{\Gamma \vdash x : T'}$$

$$\frac{(x,T) \in \Gamma}{\Gamma \vdash x : T}$$

$$\frac{e_1:Int}{e_1+e_2:Int}$$

$$\frac{e_1:Int \qquad e_2:Pos}{e_1/e_2:Int} \qquad \qquad \frac{e_1:Pos \qquad e_2:Pos}{e_1+e_2:Pos}$$

$$\frac{e_1: Pos}{e_1 + e_2: Pos}$$

Back to the start

$$\frac{\Gamma \vdash x : T \qquad \Gamma \vdash e : T}{\Gamma \vdash (x = e) : void}$$

$$\frac{\Gamma \vdash x : T \qquad T <: T'}{\Gamma \vdash x : T'}$$

$$\frac{(x,T) \in \Gamma}{\Gamma \vdash x : T}$$

$$e_1: Int \qquad e_2: Int \\ e_1 + e_2: Int$$

$$e_1: Int \qquad e_2: Pos$$
$$e_1/e_2: Int$$

$$\frac{e_1: Pos}{e_1 + e_2: Pos}$$

Does the proof still work?

If not, where does it break?

Let's type check some programs Example 1

```
var x : Pos
var y : Pos
var z : Pos
                                                   values of variables:
y = 3
                                                    x = 1
z = 2
                                                    y = 3
                     position in source
z = x + y
                                                    z = 2
X = X + Z
y = x / z
               the next statement is: z=x+y
               where x,y,z are declared Pos.
z = z + x
```

Goal: provide a type derivation for the program

Example 2

```
var x : Pos
var y : Int
var z : Pos
                                                   values of variables:
y = -5
                                                    x = 1
z = 2
                                                    y = -5
                     position in source
z = x + y
                                                    7 = 2
X = X + Z
y = x / z
               the next statement is: z=x+y
               where x,z declared Pos, y declared Int
z = z + x
```

Goal: prove that the program type checks impossible, because z=x+y would not type check

How do we know it could not type check?

Must Carefully Check Our Type Rules

var x : Pos

var y : Int

var z : Pos

y = -5

z = 2

z = x + y

X = X + Z

y = x / z

z = z + x

Conclude that the only

types we can derive are:

x: Pos, x: Int

y:Int

x + y : Int

Cannot type check

z = x + y in this environment.

Type rules:

$$\Gamma = \{ (x_1, Pos), (x_2, Int), \}$$

 (x_n, Pos)

Pos <: int

$$\frac{(x,T) \in \Gamma \qquad \Gamma \vdash e : T}{\Gamma \vdash (x=e) : void}$$

$$\frac{\Gamma \vdash x : T \qquad T <: T'}{\Gamma \vdash x : T'}$$

$$\frac{(x,T) \in \Gamma}{\Gamma \vdash x : T} \quad \frac{e_1 : Int}{e_1 + e_2 : Int}$$

$$\frac{e_1: Pos}{e_1 + e_2: Pos}$$

k: Pos -k: Int

We would need to check all cases (there are many, but they are easy)

Remark

We used in examples Pos <: Int

Same examples work if we have

```
class Int { ... }
class Pos extends Int { ... }
```

and is therefore relevant for OO languages

What if we want more complex types?

```
class A { }

    Should it type check?

class B extends A
                    Ooes this type check in Java?
  void foo() { }
                        can you run it?

    Does this type check in Scala?

class Test {
  public static void main(String[]
args) {
    B[] b = new B[5];
    A[] a;
    a = b;
    System.out.println("Hello,");
    a[0] = new A();
    System.out.println("world!");
    b[0].foo();
```

What if we want more complex types?

Suppose we add to our language a reference type:

class Ref[T](var content : T)

Programs:

 $var x_1 : Pos$

 $var x_2 : Int$

var x₃ : Ref[Int]

 $var x_4 : Ref[Pos]$

x = y

x = y + z

x = y / z

x = y + z.content

x.content = y

Exercise 1:

Extend the type rules to use with

Ref[T] types.

Show your new type system is

sound.

Exercise 2:

Can we use the subtyping rule? If not, where does the proof break?

$$\frac{T <: T'}{Ref[T] <: Ref[T']}$$

class Ref[T](var content : T)

Can we use the subtyping rule

$$\begin{array}{ccc} T <: T' & Pos <: Int \\ \hline Ref[T] <: Ref[T'] & Ref[Pos] <: Ref[Int] \end{array}$$

```
var x : Ref[Pos]
var y : Ref[Int]
var z : Int
```

x.content = 1

y.content = -1

y = xy.content = 0z = z / x.content $(y, Ref[Int]) \in \Gamma$

 $\Gamma \vdash x : Ref[Pos] \quad \Gamma \vdash Ref[Pos] <: Ref[Int]$

 $\Gamma \vdash x$: Ref[Int]

 $\Gamma \vdash (y = x)$: void

type checks

class Ref[T](var content : T)

Can we use the subtyping rule

$$\frac{T <: T'}{Ref[T] <: Ref[T']}$$

var x : Ref[Pos]
var y : Ref[Int]
var z : Int
x.content = 1
y.content = -1
y = x
y.content = 0
z = z / x.content

class Ref[T](var content : T)

Can we use the subtyping rule

$$\frac{T <: T'}{Ref[T] <: Ref[T']}$$

var x : Ref[Pos]

var y : Ref[Int]

var z : Int

x.content = 1

y.content = -1

y = x

y.content = 0

z = z / x.content

class Ref[T](var content : T)

y = x

Can we use the subtyping rule

Analogously

class Ref[T](var content : T)

Can we use the converse subtyping rule

$$\frac{T <: T'}{Ref[T'] <: Ref[T]}$$

var x : Ref[Pos]

var y : Ref[Int]

var z : Int

x.content = 1

y.content = -1

x = y

y.content = 0

z = z / x.content

CRASHES

Mutable Classes do not Preserve Subtyping

Same Holds for Arrays, Vectors, all mutable containers

Even if T <: T',

Array[T] and Array[T'] are unrelated types

```
var x : Array[Pos](1)
var y : Array[Int](1)
var z : Int
x[0] = 1
y[0] = -1
y = x
y[0] = 0
z = z / x[0]
```

Case in Soundness Proof Attempt

class Ref[T](var content : T)

Can we use the subtyping rule

$$\frac{T <: T'}{Ref[T] <: Ref[T']}$$

var x : Ref[Pos]

var y : Ref[Int]

var z : Int

x.content = 1

y.content = -1

y = x

y.content = 0z = z / x.content

prove that runtime value of each variable belongs to its type.

Soundness Proof Attempt [Cont.]

- Need to have an operational semantics for the language
- State g : (Var U Addr) -> (Int U Addr)
- A very good property that we need :
 - $\forall x. \Gamma \vdash x : \text{Ref[Pos]} \Rightarrow g(g(x)) > 0$
 - Cannot prove this property is preserved because g(x) = g(y) and "y.content = 0" may update g(g(x)) (given by operational semantics)
- Proof will not work for any stronger properties also

Mutable vs Immutable Containers

- Immutable container, Coll[T]
 - has methods of form e.g. get(x:A) : T
 - if T <: T', then Coll[T'] has get(x:A) : T'</pre>
 - we have (A → T) <: (A→ T') covariant rule for functions, so Coll[T] <: Coll[T']</p>
- Write-only data structure have
 - setter-like methods, set(v:T) : B
 - if T <: T', then Container[T'] has set(v:T') : B</pre>
 - would need (T' → B) <: (T → B)
 contravariance for arguments, so Coll[T'] <: Coll[T]
- Read-Write data structure need both. That is coll[T] is invariant in T

A cool exercise – Physical Units as Types

- Define a "unit type" by the following grammar
- $u \rightarrow b \mid u^{-1} \mid u * u$
- $b \rightarrow kg \mid m \mid s \mid A \mid K \mid mole \mid cd$
- We use the syntactic sugar
 - u^n to denote u multiplied with u n-times
 - $-\frac{u_1}{u_2}$ to denote $u_1 * u_2^{-1}$
- Give the type rules for the arithmetic operations +,*,/, sqrt, sin, abs.
- Trigonometric functions take argument without units
- An expression has no units if $\Gamma \vdash e$: 1

Physical Units as Types Part 2

- The unit expressions are strings, so
- $\frac{S^2m^2}{m^2s}$ and s will not be considered as same types though they have same units
- How can we modify the type rules so that they type check expressions, whenever their units match as per physics?

Physical Units as Types Part 3

Determine the type of T in the following code fragment.

- val x: < m > = 800
- val y: < m > = 6378
- val g: < m/(s*s) > = 9.8
- val R = x + y
- val w = sqrt(g/R)
- val T = (2 * Pi) / w

Physical Units as Types Part 4

Suppose you want to use the unit *feet* in addition to the SI units. How can you extend your type system to accommodate for this? (Assume that 1m = 3.28084 feet.)