Soundness of Types

Ensuring that a type system is not broken

Example: Tootool 0.1 Language

Tootool is a rural community in the central east part of the Riverina [New South Wales, Australia]. It is situated by road, about 4 kilometres east from French Park and 16 kilometres west from The Rock. Tootool Post Office opened on 1 August 1901 and closed in 1966. [Wikipedia]

unsound

Type System for Tootool 0.1

Pos <: Int
Neg <: Int
$\frac{\Gamma \vdash \mathrm{x}: \mathrm{T} \quad \Gamma \vdash \mathrm{e}: \mathrm{T}}{\Gamma \vdash(\mathrm{x}=\mathrm{e}): \text { void }}$ assignment
$\frac{\Gamma \vdash \mathrm{e}: \mathrm{T} \quad \Gamma \vdash \mathrm{T}<\mathrm{T},}{\Gamma \vdash \mathrm{e}: \mathrm{T}}$ subtyping
does it type check? def intSqrt(x:Pos) : Pos = \{ ...\} var p: Pos
var q : Neg
var r: Pos
$q=-5 \quad \Gamma=\{(p, P o s),(q, N e g),(r, P o s)$, $\mathrm{p}=\mathrm{q} \longleftarrow$ (intSqrt, Pos \rightarrow Pos) $\}$
$r=$ intSqrt(p)
Runtime error: intSqrt invoked with a negative argument!
$\frac{\mathrm{p}: \operatorname{Pos} \quad \text { Pos }<: \text { Int }}{\frac{\mathrm{p}: \text { Int }}{} \frac{\mathrm{q}: \text { Neg } \quad \text { Neg }<: \text { Int }}{\mathrm{q}: \text { Int }}}$

What went wrong in Tootool 0.1 ?

Pos <: Int
Neg <: Int

does it type check? - yes def intSqrt(x:Pos) : Pos = \{ ...\} var p: Pos
var q : Neg
var r: Pos
$q=-5 \longleftarrow \Gamma=\{(p, P o s),(q, N e g),(r, P o s)$, $\mathrm{p}=\mathrm{q} \longleftarrow$ (intSqrt, Pos \rightarrow Pos) $\}$
$r=\operatorname{intSqrt}(p)$

Runtime error: intSqrt invoked with a negative argument!
x must be able to store any
e can have any value from T
value from $\mathrm{T} \frac{? \quad \Gamma \vdash \mathrm{e}: \mathrm{T}}{\Gamma \vdash(\mathrm{x}=\mathrm{e}): \text { void }}$
Cannot use $\Gamma \vdash e: T$ to mean "x promises it can store any $\mathrm{e} \in \mathrm{T}$ "

Recall Our Type Derivation

Pos <: Int
Neg <: Int
$\frac{\Gamma \vdash \mathrm{x}: \mathrm{T} \quad \Gamma \vdash \mathrm{e}: \mathrm{T}}{\Gamma \vdash(\mathrm{x}=\mathrm{e}): \text { void }}$ assignment
$\frac{\Gamma \vdash \mathrm{e}: \mathrm{T} \quad \Gamma \vdash \mathrm{T}<: \mathrm{T}^{\prime}}{\Gamma \vdash \mathrm{e}: \mathrm{T}^{\prime}}$ subtyping
does it type check? - yes def intSqrt(x:Pos): Pos = \{ ...\} var p: Pos
var q: Neg
var r: Pos
$q=-5 \longleftarrow \quad i=\{(p$, Pos $),(q$, Neg $),(r$, Pos $)$,
$\mathrm{p}=\mathrm{q} \longleftarrow$ (intSqrt, Pos \rightarrow Pos) $\}$
$r=$ intSqrt(p)
Runtime error: intSqrt invoked with a negative argument!

Values from p are integers. But p did not promise to store all kinds of integers/ Only
 positive ones!

Corrected Type Rule for Assignment

Pos <: Int
Neg <: Int
$\frac{\Gamma \vdash \mathrm{x} . \mathrm{T} \quad \mathrm{TFe}: \mathrm{T}}{\Gamma \vdash(\mathrm{x}=\mathrm{e}): \text { void }}$ assignment
$\frac{\Gamma \vdash \mathrm{e}: \mathrm{T} \quad \Gamma \vdash \mathrm{T}<: \mathrm{T}^{\prime}}{\Gamma \vdash \mathrm{e}: \mathrm{T}}$ subtyping
does it type check? def intSqrt(x:Pos) : Pos = \{ ... $\}$ var p : Pos
var q: Neg
var r: Pos

does not type check
x must be able to store any value from T

$$
\frac{(x, T) \in \Gamma \quad \Gamma \vdash \mathrm{e}: \mathrm{T}}{\Gamma \vdash(\mathrm{x}=\mathrm{e}): \text { void }}
$$

e can have any value from T
Γ stores declarations (promises)

Corrected Type Rule for Assignment

Pos <: Int
Neg <: Int
does it type check? def intSqrt(x:Pos) : Pos = \{ ...\} var p: Pos
var q: Neg
$\frac{\Gamma \vdash \mathrm{x}: \mathrm{T} \quad \mathrm{TFe}: \mathrm{T}}{\Gamma \vdash(\mathrm{x}=\mathrm{e}): \text { void }}$
$\frac{\Gamma \vdash \mathrm{e}: \mathrm{T} \quad \Gamma \vdash \mathrm{T}<: \mathrm{T}^{\prime}}{\Gamma \vdash \mathrm{e}: \mathrm{T}}$, assignment subtyping
var r: Pos

Is there another way to fix the type system?

How could we ensure that some other programs will not break?

Type System Soundness

Proving Soundness of Type Systems

- Goal of a sound type system:
- if a program type checks, it never "crashes"
- crash = some precisely specified bad behavior
e.g. invoking an operation with a wrong type
- dividing a string by another string: "cat" / "frog"
- trying to multiply a Window object by a File object
e.g. dividing an integer by zero
- Never crashes: no matter how long it executes
- proof is done by induction on program execution

Proving Soundness by Induction

- Program moves from state to state
- Bad state = state where program is about to exhibit a bad operation ("cat" / "frog")
- Good state = state that is not bad
- To prove:
program type checks \rightarrow states in all executions are good
- Usually need a stronger inductive hypothesis; some notion of very good (VG) state such that: program type checks \rightarrow program's initial state is very good state is very good \rightarrow next state is also very good state is very good \rightarrow state is good (not about to crash)

A Simple Programming Language

Program State

```
var x : Pos
var y : Int
var z:Pos
x = 3
y=-5
z=4
X = X + Z
y=x/z
Z = Z + X
```

Initially, all variables have value 1
values of variables:
$x=1$
$y=1$
$z=1$

Program State

```
var x : Pos
var y : Int
var z:Pos
x=3
y=-5
z=4
X = X + Z
y=x/z
Z = Z + X
```

values of variables:
$x=3$
$y=1$
$z=1$

Program State

$$
\begin{aligned}
& \text { var } x: P o s \\
& \text { var } y: \operatorname{lnt} \\
& \text { var } z: P o s \\
& x=3 \\
& y=-5 \\
& z=4 \\
& x=x+z \\
& y=x / z \\
& z=z+x
\end{aligned}
$$

values of variables:

$$
x=3
$$

$$
y=-5
$$

$$
z=1
$$

Program State

```
var x:Pos
var y : Int
var z:Pos
x=3
y=-5
z=4
x=x+z}\longleftarrow~\mathrm{ position in source
y=x/z
z = z + x
```

values of variables:
$x=3$
$y=-5$
$z=4$

Program State

```
var x : Pos
var y : Int
var z:Pos
x=3
y=-5
z=4
x = x + z
y=x/z
z = z + x
```

values of variables:
$x=7$
$y=-5$
$z=4$

```
\(x=x+z\)
position in source
\(Z=Z+X\)
```


Program State

```
var x:Pos
var y : Int
var z:Pos
x=3
y=-5
z=4
x = x + z
y=x/z
z=z+x}\longleftarrow\longleftrightarrow position in sourc
```

values of variables:
$x=7$
$y=1$
$z=4$
formal description of such program execution is called operational semantics

Operational semantics

Operational semantics gives meaning to programs by describing how the program state changes as a sequence of steps.

- Small-step Operational Semantics (SOS): consider individual steps (e.g. z = x +y)

V:
pc:
$\mathrm{g}: ~ \mathrm{~V} \rightarrow \mathrm{Int}$
(g, pc)
set of variables in the program integer variable denoting the program counter function giving the values of program variables program state

Then, for each possible statement in the program we define how it changes the program state.

- Big-step semantics: consider the effect of entire blocks

Operational semantics

Operation semantics

- If $p c: z=x+y,(g, p c) \rightarrow\left(g^{\prime}, p c+1\right)$, where $g^{\prime}=g[z \mapsto$ $g(x)+g(y)]$
- If $p c: z=x,(g, p c) \rightarrow\left(g^{\prime}, p c+1\right)$, where $g^{\prime}=g[z \mapsto g(x)]$

Type Rules of Simple Language

Programs:

$\operatorname{var} x_{1}: \operatorname{Pos}$
$\operatorname{var} x_{2}: \operatorname{lnt}$
variable declarations
var x: Pos (strictly positive)
var x: Int
$\operatorname{var} x_{n}:$ Pos
$\operatorname{var} x_{1}: \operatorname{Pos}$
$\operatorname{var} x_{2}: \operatorname{lnt}$
$\left\{\begin{array}{l}\text { variable declarations } \\ \text { var } \mathrm{x}: \text { Pos (strictly positive) }\end{array}\right.$

Type rules:

$$
\Gamma=\left\{\left(x_{1}, \operatorname{Pos}\right),\right.
$$

$$
\left(x_{2}, \ln t\right)
$$

$$
\left.\left(x_{n}, \operatorname{Pos}\right)\right\}
$$

Pos <: Int

$$
\frac{(x, T) \in \Gamma \quad \Gamma \vdash e: T}{\Gamma \vdash(x=e): \text { void }}
$$

$$
\frac{\Gamma \vdash x: T \quad T<: T^{\prime}}{\Gamma \vdash x: T^{\prime}}
$$

$$
\frac{(x, T) \in \Gamma}{\Gamma \vdash x: T} \quad \frac{e_{1}: \text { Int } \quad e_{2}: \text { Int }}{e_{1}+e_{2}: \text { Int }}
$$

$$
\frac{e_{1}: \text { Int } \quad e_{2}: \text { Pos }}{e_{1} / e_{2}: \text { Int }} \quad \frac{e_{1}: \text { Pos } e_{2}: \text { Pos }}{e_{1}+e_{2}: \text { Pos }}
$$

$$
\overline{\mathrm{k}: \operatorname{Pos}} \overline{-\mathrm{k}: \operatorname{Int}}
$$

Bad State: About to Divide by Zero (Crash)

```
var x:Pos
var y : Int
var z:Pos
x=1
y=-1
z=x+y
x=x+z
y=x/z
z = z +
values of variables:
\[
\begin{aligned}
& x=1 \\
& y=-1 \\
& z=0
\end{aligned}
\]
```

Definition: state is bad if the next instruction is of the form $x_{i}=x_{j} / x_{k}$ and x_{k} has value 0 in the current state.

Good State: Not (Yet) About to Divide by Zero

```
var x: Pos
var y : Int
var z: Pos
\(x=1\)
\(y=-1\)
\(z=x+y\)
\(x=x+z\)
\(y=x / z\)
z = \(\mathrm{z}+\mathrm{x}\)
```

values of variables:
$x=1$
$y=-1$
$z=1$
Good

Definition: state is good if it is not bad.
Definition: state is bad if the next instruction is of the form $x_{i}=x_{j} / x_{k}$ and x_{k} has value 0 in the current state.

Good State: Not (Yet) About to Divide by Zero

```
var x: Pos
var y : Int
var z: Pos
\(x=1\)
\(y=-1\)
\(z=x+y\)
\(x=x+z \longleftarrow\) position in source
\(y=x / z\)
z = \(\mathrm{z}+\mathrm{x}\)
\(y=x / z\)
```

values of variables:
$x=1$
$y=-1$
$z=0$

Definition: state is good if it is not bad.
Definition: state is bad if the next instruction is of the form $x_{i}=x_{j} / x_{k}$ and x_{k} has value 0 in the current state.

Moved from Good to Bad in One Step!

Being good is not preserved by one step, not inductive!
It is very local property, does not take future into account.

```
var x:Pos
var y : Int
var z:Pos
x=1
y=-1
z=x+y
x=x+z
y=x/z}\longleftarrow~\mathrm{ position in source
z = z + x
```

values of variables:
$x=1$
$y=-1$
$z=0$
Bad

Definition: state is good if it is not bad.
Definition: state is bad if the next instruction is of the form $x_{i}=x_{j} / x_{k}$ and x_{k} has value 0 in the current state.

Being Very Good: A Stronger Inductive Property

$$
\text { Pos }=\{1,2,3, \ldots\}
$$

```
var x: Pos
var y : Int
var z: Pos
\(x=1\)
    This state is already not very good.
\(y=-1\)
\(z=x+y\)
\(x=x+z \longleftarrow\) position in source
values of variables:
    \(x=1\)
    \(y=-1\)
    \(\underline{z=0} \notin \operatorname{Pos}\)
\(y=x / z\)
z = \(\mathrm{z}+\mathrm{x}\)
```

Definition: state is good if it is not about to divide by zero.
Definition: state is very good if each variable belongs to the domain determined by its type (if z:Pos, then z is strictly positive).

Proving Soundness - Intuition

We want to show if a program type checks:

- It will be very good at the start
- if it is very good in the current step, it will remain very good in the next step
- If it is very good, it will not crash

Hence, please type check your program, and it will never crash!
Soundnes proof = defining "very good" and checking the properties above.

Proving Soundness in Our Case

 Holds: in initial state, variables are =1- If a program type checks :
\checkmark - It will be very good from at start.

- if it is very good in the current step, it will remain very good in the next
\checkmark - If it is very good, it will not crash.
If next state is x / z, type rule ensures z has type Pos Because state is very good, it means $z \in$ Pos so z is not 0 , and there will be no crash.

Definition: state is very good if each variable belongs to the domain determined by its type (if z :Pos, then z is strictly positive).

Proving that "very goodness" is preserved by state transition

- How do we prove
- if you are very good, then you will remain very good in the next step
- Irrespective of the actual program
- We could use SOS - small step operational semantics here.

Proving that "very goodness" is preserved by state transition

Hypothesize that g is very good

Prove that g' is very good
When the program type checks

- Do this for every possible "step" of the operational semantics

Proving this for our little type system

Hypothesize that the following holds in g
For all vars x, x :Pos $=>x$ is strictly positive

Prove that the following holds in g'
For all vars x, x :Pos $=>x$ is strictly positive

$$
\forall x . \Gamma \vdash x: \operatorname{Pos} \Rightarrow g^{\prime}(x)>0
$$

- Can we prove this ?
- Only if we are given that the program type checks

Recall the Type Rules

Pos <: Int

$$
\begin{gathered}
\frac{(x, T) \in \Gamma \quad \Gamma \vdash e: T}{\Gamma \vdash(x=e): \text { void }} \\
\frac{\Gamma \vdash x: T \quad T<: T^{\prime}}{\Gamma \vdash x: T^{\prime}}
\end{gathered}
$$

$$
\frac{(x, T) \in \Gamma}{\Gamma \vdash x: T}
$$

$$
\frac{e_{1}: \text { Int } \quad e_{2}: \text { Int }}{e_{1}+e_{2}: \text { Int }}
$$

$$
\overline{\mathrm{k}: \operatorname{Pos}} \quad \overline{-\mathrm{k}: \operatorname{Int}} \quad \frac{e_{1}: \operatorname{Int} e_{2}: \operatorname{Pos}}{e_{1} / e_{2}: \operatorname{Int}} \quad \frac{e_{1}: \operatorname{Pos} \quad e_{2}: \text { Pos }_{1}}{e_{1}+e_{2}: \operatorname{Pos}}
$$

Back to the start

$$
\begin{gathered}
\overline{\mathrm{k}: \operatorname{Pos}} \overline{\text {-k: Int }} \\
\hline \frac{\Gamma \vdash x: T}{\Gamma \vdash(x) \quad \Gamma: T} \\
\frac{\Gamma \vdash x: T}{\Gamma \vdash(x) e i d} \\
\frac{\Gamma \vdash x: T^{\prime}}{} \\
\frac{(x, T) \in \Gamma}{\Gamma \vdash x: T}
\end{gathered}
$$

Does the proof still work?

If not, where does it break?

$$
\begin{gathered}
\frac{e_{1}: \text { Int } \quad e_{2}: \text { Int }}{e_{1}+e_{2}: \text { Int }} \\
\frac{e_{1}: \text { Int } \quad e_{2}: \text { Pos }}{e_{1} / e_{2}: \text { Int }} \\
\frac{e_{1}: \text { Pos } \quad e_{2}: \operatorname{Pos}}{e_{1}+e_{2}: \operatorname{Pos}}
\end{gathered}
$$

Let's type check some programs Example 1

```
var x : Pos
var y:Pos
var z:Pos
y = 3
z=2
z=x+y}\longleftarrow< position in sourc
x = x + z
y=x/z the next statement is: z=x+y
z=z+x where x,y,z are declared Pos.
```

Goal: provide a type derivation for the program

Example 2

```
var x:Pos
var y : Int
var z: Pos
y = -5
z=2
z=x+y}\longleftarrow< position in sourc
x = x + z
y=x/z the next statement is: z=x+y
z = z + X
where x,z declared Pos, y declared Int
```

Goal: prove that the program type checks impossible, because $z=x+y$ would not type check How do we know it could not type check?

Must Carefully Check Our Type Rules

var x: Pos
Conclude that the only
var y : Int
var z: Pos
$y=-5$
types we can derive are:
x : Pos, x: Int
Type rules:
$\Gamma=\left\{\left(\mathrm{x}_{1}, \mathrm{Pos}\right)\right.$,
($\mathrm{x}_{2}, \operatorname{lnt}$),
an
$z=2$
$z=x+y$
y : Int
$x+y$: Int

$$
\frac{(x, T) \in \Gamma \quad \Gamma \vdash e: T}{\Gamma \vdash(x=e): \text { void }}
$$

$x=x+z$
$y=x / z$
Cannot type check

$$
\frac{\Gamma \vdash x: T \quad T<: T^{\prime}}{\Gamma \vdash x: T^{\prime}}
$$

$z=x+y$ in this environment.

$$
\frac{(x, T) \in \Gamma}{\Gamma \vdash x: T} \frac{e_{1}: \text { Int } \quad e_{2}: \text { Int }}{e_{1}+e_{2}: \text { Int }}
$$

$$
\frac{e_{1}: \text { Int } \quad e_{2}: \text { Pos }}{e_{1} / e_{2}: \text { Int }} \quad \frac{e_{1}: \text { Pos } \quad e_{2}: \text { Pos }}{e_{1}+e_{2}: \text { Pos }}
$$

$$
\overline{\mathrm{k}: \operatorname{Pos}} \overline{-\mathrm{k}: \operatorname{Int}}
$$

We would need to check all cases
(there are many, but they are easy)

Remark

- We used in examples Pos <: Int
- Same examples work if we have
class Int $\{. .$.
class Pos extends Int $\{$... $\}$
and is therefore relevant for OO languages

What if we want more complex types?

class A \{ \}
 class B extends A
 - Should it type check?

 void foo() \{ \}Does this type check in Java?

- can you run it?
- Does this type check in Scala?

What if we want more complex types?

Suppose we add to our language a reference type: class Ref[T](var content: T)

Programs:
var x_{1} : Pos
$\operatorname{var} \mathrm{x}_{2}$: Int
$\operatorname{var} x_{3}: \operatorname{Ref}[I n t]$
$\operatorname{var} \mathrm{X}_{4}: \operatorname{Ref}[\mathrm{Pos}]$
$x=y$
$x=y+z$
$x=y / z$
$x=y+z . c o n t e n t$
x .content $=\mathrm{y}$

Exercise 1:

Extend the type rules to use with Ref[T] types.
Show your new type system is sound.
Exercise 2:
Can we use the subtyping rule?
If not, where does the proof break?
$\frac{\mathrm{T}<: \mathrm{T}^{\prime}}{\operatorname{Ref}[\mathrm{T}]<: \operatorname{Ref}\left[\mathrm{T}^{\prime}\right]}$

Simple Parametric Class

class Ref[T](var content: T)
Can we use the subtyping rule

$\frac{\operatorname{Pos}<: \operatorname{Int}}{\operatorname{Ref}[\operatorname{Pos}]<: \operatorname{Ref}[\operatorname{Int}]}$

```
var \(x: \operatorname{Ref}[P o s]\)
var y : Ref[Int]
var z: Int
\(y=x\)
\(\Gamma \vdash(y=x):\) void
y. content \(=0\)
z = z / x.content
\((y, \operatorname{Ref}[\operatorname{Int}]) \in \Gamma \quad \frac{\Gamma \vdash \mathrm{x}: \operatorname{Ref}[\operatorname{Pos}] \quad \Gamma \vdash \operatorname{Ref}[\operatorname{Pos}]<: \operatorname{Ref}[\operatorname{Int}]}{\Gamma \vdash x: \operatorname{Ref}[\operatorname{Int}]}\)

\section*{Simple Parametric Class}
class Ref[T](var content: T)
Can we use the subtyping rule
\[
\frac{\mathrm{T}<: \mathrm{T}^{\prime}}{\operatorname{Ref}[\mathrm{T}]<: \operatorname{Ref}\left[\mathrm{T}^{\prime}\right]}
\]


\section*{Simple Parametric Class}
class Ref[T](var content: T)
Can we use the subtyping rule
\[
\frac{\mathrm{T}<: \mathrm{T}^{\prime}}{\operatorname{Ref}[\mathrm{T}]<: \operatorname{Ref}\left[\mathrm{T}^{\prime}\right]}
\]


\section*{Simple Parametric Class}
class Ref[T](var content: \(T\) )
Can we use the subtyping rule
\(\operatorname{var} \mathrm{x}: \operatorname{Ref}[P o s]\)
var \(y: \operatorname{Ref}[I n t]\)
var z: Int
x.content = 1
\(y\). content \(=-1\)
\(y=x\)
y.content \(=0\)

CRASHES
z = z / x.content


\section*{Analogously}

\section*{class Ref[T](var content: T)}

Can we use the converse subtyping rule
\[
\frac{\mathrm{T}<: \mathrm{T}^{\prime}}{\operatorname{Ref}\left[\mathrm{T}^{\prime}\right]<: \operatorname{Ref}[\mathrm{T}]}
\]


\section*{Mutable Classes do not Preserve Subtyping}
class Ref[T](var content: T)
Even if \(\mathrm{T}<: \mathrm{T}^{\prime}\),
\(\operatorname{Ref}[T]\) and Ref[T'] are unrelated types
\(\operatorname{var} x: \operatorname{Ref}[T]\)
var y: Ref[T']
\(x=y \longleftarrow\) type checks only if \(T=T^{\prime}\)

\section*{Same Holds for Arrays, Vectors, all mutable containers}

Even if \(\mathrm{T}<\) : \(\mathrm{T}^{\prime}\),
\(\operatorname{Array}[T]\) and \(\operatorname{Array}\left[\mathrm{T}^{\prime}\right]\) are unrelated types
\[
\begin{aligned}
& \operatorname{var} x: \operatorname{Array[Pos](1)} \\
& \operatorname{var} y: \operatorname{Array[\operatorname {lnt}](1)} \\
& \operatorname{var} z: \operatorname{Int} \\
& x[0]=1 \\
& y[0]=-1 \\
& y=x \\
& y[0]=0 \\
& z=z / x[0]
\end{aligned}
\]

\section*{Case in Soundness Proof Attempt}
class Ref[T](var content: T)
Can we use the subtyping rule
\[
\frac{\mathrm{T}<: \mathrm{T}^{\prime}}{\operatorname{Ref}[\mathrm{T}]<: \operatorname{Ref}\left[\mathrm{T}^{\prime}\right]}
\]
\(\operatorname{var} x: \operatorname{Ref}[P o s]\)
var y: Ref[Int]
var z: Int
x.content = 1
\(y\). content \(=-1\)
\(y=x\)
\(y\).content \(=0\)
z = z / x.content

prove that runtime value of each variable belongs to its type.

\section*{Soundness Proof Attempt [Cont.]}
\[
\begin{aligned}
& \text { var } x: \operatorname{Ref}[P o s] \\
& \text { var } y: \operatorname{Ref}[\operatorname{Int}] \\
& \text { var } z: \operatorname{lnt} \\
& x . c o n t e n t=1 \\
& y . c o n t e n t=-1 \\
& y=x \\
& y . c o n t e n t=0 \\
& z=z / x . c o n t e n t
\end{aligned}
\]
\[
\frac{\mathrm{T}<: \mathrm{T}^{\prime}}{\operatorname{Ref}[\mathrm{T}]<: \operatorname{Ref}\left[\mathrm{T}^{\prime}\right]}
\]
\(\frac{T<: T^{\prime}}{\operatorname{Ref}[T]<: \operatorname{Ref}\left[T^{\prime}\right]}\)

- Need to have an operational semantics for the language
- State g : (Var U Addr) -> (Int U Addr)
- A very good property that we need :
- \(\forall x . \Gamma \vdash \mathrm{x}: \operatorname{Ref}[\operatorname{Pos}] \Rightarrow g(g(x))>0\)
- Cannot prove this property is preserved because \(g(x)=g(y)\) and " y .content \(=0\) " may update \(g(g(x))\) (given by operational semantics)
- Proof will not work for any stronger properties also

\section*{Mutable vs Immutable Containers}
- Immutable container, Coll[T]
- has methods of form e.g. get(x:A) : T
- if \(T<: T^{\prime}\), then Coll[ [T'] has get(x:A) : \(\mathrm{T}^{\prime}\)
- we have \((A \rightarrow T)<:\left(A \rightarrow T^{\prime}\right)\) covariant rule for functions, so Coll [T] <: Coll[ [T']
- Write-only data structure have
- setter-like methods,

\author{
\(\operatorname{set}(\mathrm{v}: \mathrm{T})\) : B
}
- if T <: \(\mathrm{T}^{\prime}\), then Container[ \(\left.\mathrm{T}^{\prime}\right]\) has \(\operatorname{set}\left(\mathrm{v}: \mathrm{T}^{\prime}\right)\) : B
- would need ( \(\mathrm{T}^{\prime} \rightarrow \mathrm{B}\) ) <: \((\mathrm{T} \rightarrow \mathrm{B})\) contravariance for arguments, so Coll[T’] <: Coll[T]
- Read-Write data structure need both. That is coll[T] is invariant in T

\section*{A cool exercise -}

\section*{Physical Units as Types}
- Define a "unit type" by the following grammar
- \(u \rightarrow b\left|u^{-1}\right| u * u\)
- \(b \rightarrow k g|m| s|A| K \mid\) mole \(\mid c d\)
- We use the syntactic sugar
- \(u^{n}\) to denote \(u\) multiplied with \(u\) n-times
- \(\frac{u_{1}}{u_{2}}\) to denote \(u_{1} * u_{2}^{-1}\)
- Give the type rules for the arithmetic operations +,*, /, sqrt, sin, abs.
- Trigonometric functions take argument without units
- An expression has no units if \(\Gamma \vdash e: 1\)

\section*{Physical Units as Types Part 2}
- The unit expressions are strings, so
- \(\frac{s^{2} m^{2}}{m^{2} s}\) and \(s\) will not be considered as same types though they have same units
- How can we modify the type rules so that they type check expressions, whenever their units match as per physics?

\section*{Physical Units as Types Part 3}

Determine the type of \(T\) in the following code fragment.
- val x : <m> \(=800\)
- val \(\mathrm{y}:<\mathrm{m}>=6378\)
- val g: <m/(s*s)> = 9.8
- val \(R=x+y\)
- val w = sqrt(g/R)
- val T \(=(2 * \mathrm{Pi}) / \mathrm{w}\)

\section*{Physical Units as Types Part 4}

Suppose you want to use the unit feet in addition to the SI units. How can you extend your type system to accommodate for this?
(Assume that \(1 \mathrm{~m}=3.28084\) feet.)```

