CYK Algorithm for Parsing

 General Context-Free Grammars
Why Parse General Grammars

- Can be difficult or impossible to make grammar unambiguous
- thus LL(k) and LR(k) methods cannot work, for such ambiguous grammars
- Some inputs are more complex than simple programming languages
- mathematical formulas:

$$
x=y / \backslash z \quad ? \quad(x=y) / \backslash z \quad x=(y / \backslash z)
$$

- natural language:

I saw the man with the telescope.

- future programming languages

I saw the man with the telescope.

CYK Parsing Algorithm

C:

John Cocke and Jacob T. Schwartz (1970). Programming languages and their compilers: Preliminary notes. Technical report, Courant Institute of Mathematical Sciences, New York University.
Y :
Daniel H. Younger (1967). Recognition and parsing of context-free languages in time n^{3}. Information and Control 10(2): 189-208.

K:
T. Kasami (1965). An efficient recognition and syntax-analysis algorithm for context-free languages. Scientific report AFCRL-65-758, Air Force Cambridge Research Lab, Bedford, MA.

Two Steps in the Algorithm

1) Transform grammar to normal form called Chomsky Normal Form
(Noam Chomsky, mathematical linguist)
2) Parse input using transformed grammar dynamic programming algorithm
"a method for solving complex problems by breaking them down into simpler steps.
It is applicable to problems exhibiting the properties of overlapping subproblems"

Balanced Parentheses Grammar

Original grammar G

$$
S \rightarrow " \cdots|(S)| S S
$$

Modified grammar in Chomsky Normal Form:

$$
\begin{aligned}
& \mathrm{S} \rightarrow{ }^{\prime \prime \prime} \mid \mathrm{S}^{\prime} \\
& \leftarrow \text { if } \\
& " n \in L(G) \\
& \left.\begin{array}{l}
\mathrm{S}^{\prime} \rightarrow \mathrm{N}_{(} \mathrm{N}_{S}\left|N_{(} N_{1}\right| \mathrm{S}^{\prime} \mathrm{S}^{\prime} \\
\mathrm{N}_{S)} \rightarrow \mathrm{S}^{\prime} \mathrm{N}_{\text {j }}
\end{array}\right\} \text { Rules } \quad \begin{array}{l}
\mathrm{N} \rightarrow \mathrm{~N}_{1} \mathrm{~N}_{2} \\
\text { nontermminals }
\end{array} \\
& \mathrm{N}_{1} \rightarrow \text { (} \\
& N, \rightarrow \text {) }
\end{aligned}
$$

- Terminals: () Nonterminals: S S' $\mathrm{N}_{\mathrm{s})} \mathrm{N}, \mathrm{N}_{(}$

Idea How We Obtained the Grammar

Chomsky Normal Form transformation can be done fully mechanically

Dynamic Programming to Parse Input

Assume Chomsky Normal Form, 3 types of rules:

$$
\begin{aligned}
& S \rightarrow{ }^{\prime \prime \prime} \mid S^{\prime} \\
& N_{\mathrm{j}} \rightarrow \mathrm{t} \\
& \mathrm{~N}_{\mathrm{i}} \rightarrow \mathrm{~N}_{\mathrm{j}} \mathrm{~N}_{\mathrm{k}}
\end{aligned}
$$

(only for the start non-terminal) (names for terminals)
(just $\mathbf{2}$ non-terminals on RHS)
Decomposing long input:

find all ways to parse substrings of length $1,2,3, \ldots$

$$
\begin{aligned}
& \text { Parsing an Input } \\
& \mathrm{S}^{\prime} \rightarrow \mathrm{N}_{(} \mathrm{N}_{\mathrm{S})}\left|\mathrm{N}_{(} \mathrm{N}_{\mathrm{l}}\right| \mathrm{S}^{\prime} \mathrm{S}^{\prime} \\
& \mathrm{N}_{\mathrm{S})} \rightarrow \mathrm{S}^{\prime} \mathrm{N}_{\text {, }} \\
& \mathrm{N}_{1} \rightarrow \text { (} \\
& \mathrm{N}_{\mathrm{s}} \rightarrow \text {) } \\
& \text { Substring } \begin{array}{l}
\text { length } \\
6 \\
4 \\
2 \\
1 \\
2
\end{array}
\end{aligned}
$$

Algorithm Idea

w_{pq} - substring from p to q $d_{p q}-$ all non-terminals that could expand to w_{pq} Initially $d_{p p}$ has $N_{w(p, p)}$ key step of the algorithm:
if $X \rightarrow Y Z$ is a rule, Y is in $d_{p r}$, and Z is in $\mathrm{d}_{(r+1) \mathrm{q}}$
then put X into $d_{p q}$ ($p<=r<q$),
in increasing value of ($q-p$)

Algorithm

INPUT: grammar G in Chomsky normal form word w to parse using G

OUTPUT: true iff (w in L(G))
$N=|w|$
var d: Array [N][N]
for $p=1$ to $N\{$

$$
d(p)(p)=\{X \mid G \text { contains } X->w(p)\}
$$

for q in $\{p+1 . . N\} d(p)(q)=\{ \}\}$
for $k=2$ to $\mathrm{N} / /$ substring length
for $p=0$ to $N-k / /$ initial position
for $j=1$ to $k-1 / /$ length of first half
val $r=p+j-1 ;$ val $q=p+k-1$;
(X::=Y Z) in G
Y in $d(p)(r)$ and Z in $d(r+1)(q)$
$d(p)(q)=d(p)(q)$ union $\{X\}$
return S in $d(0)(N-1)$

Parsing another Input

Number of Parse Trees

- Let w denote word ()()()
- it has two parse trees
- Give a lower bound on number of parse trees of the word $w^{n} \quad$ (n is positive integer) w^{5} is the word ()()() ()()()()()()()()()() 2^{n}
- CYK represents all parse trees compactly
- can re-run algorithm to extract first parse tree, or enumerate parse trees one by one

Conversion to Chomsky Normal Form (CNF)

- Steps:

1. remove unproductive symbols
2. remove unreachable symbols
3. remove epsilons (no non-start nullable symbols)
4. remove single non-terminal productions (unit Productions): $\mathrm{X}::=Y$
5. reduce arity of every production to less than two
6. make terminals occur alone on right-hand side

1) Unproductive non-terminals

What is funny about this grammar:
stmt ::= identifier := identifier
| while (expr) stmt
if (expr) stmt else stmt
expr ::= term + term | term - term term ::= factor $*$ factor factor ::= (expr)

There is no derivation of a sequence of tokens from expr In every step will have at least one expr, term, or factor If it cannot derive sequence of tokens we call it unproductive

1) Unproductive non-terminals

- Productive symbols are obtained using these two rules (what remains is unproductive)
- Terminals are productive
- If $\mathrm{X}::=\mathrm{s}_{1} \mathrm{~s}_{2} \ldots \mathrm{~s}_{\mathrm{n}}$ is a rule and each s_{i} is productive then X is productive

Delete unproductive symbols.

The language recognized by the grammar will not change

2) Unreachable non-terminals

What is funny about this grammar with start symbol 'program'
program ::= stmt | stmt program
stmt ::= assignment | whileStmt
assignment ::= expr = expr
ifStmt ::= if (expr) stmt else stmt whileStmt ::= while (expr) stmt expr ::= identifier

No way to reach symbol 'ifStmt' from 'program'
Can we formulate rules for reachable symbols ?

2) Unreachable non-terminals

- Reachable terminals are obtained using the following rules (the rest are unreachable)
- starting non-terminal is reachable (program)
- If $X::=s_{1} s_{2} \ldots s_{n}$ is rule and X is reachable then every non-terminal in $s_{1} s_{2} \ldots s_{n}$ is reachable
- Delete unreachable nonterminals and their productions

3) Removing Empty Strings

Ensure only top-level symbol can be nullable
program ::= stmtSeq
stmtSeq ::= stmt | stmt ; stmtSeq
stmt ::= "" | assignment | whileStmt | blockStmt
blockStmt ::= \{ stmtSeq \}
assignment ::= expr = expr
whileStmt ::= while (expr) stmt
expr ::= identifier

How to do it in this example?

3) Removing Empty Strings - Result

program ::= """ | stmtSeq stmtSeq ::= stmt| stmt ; stmtSeq |
| ; stmtSeq | stmt; | ;
stmt ::= assignment | whileStmt | blockStmt blockStmt ::= \{ stmtSeq $\} \mid\{ \}$
assignment ::= expr = expr
whileStmt ::= while (expr) stmt
whileStmt ::= while (expr)
expr ::= identifier

3) Removing Empty Strings - Algorithm

- Compute the set of nullable non-terminals
- If $X::=s_{1} \cdots s_{n}$ is a production and s_{i} is nullable then add new rule
- X::= $s_{1} \cdots s_{i-1} s_{i+1} \cdots s_{n} \mid s_{1} \cdots s_{n}$

$$
2^{n}
$$

- Remove all empty right-hand sides
- If starting symbol S was nullable, then introduce a new start symbol S' instead, and add rule S'::=S |""

3) Removing Empty Strings

- Since stmtSeq is nullable, the rule
blockStmt ::= \{ stmtSeq \}
gives
blockStmt ::= \{ stmtSeq \}|\{\}
- Since stmtSeq and stmt are nullable, the rule
stmtSeq ::= stmt \| stmt ; stmtSeq gives
stmtSeq ::= stmt \| stmt ; stmtSeq
| ; stmtSeq | stmt; |;

4) Eliminating unit productions

- Single production is of the form $X::=Y$
where X, Y are non-terminals

program ::= stmtSeq
stmtSeq ::= stmt
| stmt ; stmtSeq
stmt ::= assignment | whileStmt
assignment ::= expr = expr
whileStmt ::= while (expr) stmt

4) Eliminate unit productions - Result

program ::= expr = expr | while (expr) stmt
| stmt; stmtSeq
stmtSeq ::= expr = expr | while (expr) stmt
| stmt; stmtSeq
stmt ::= expr = expr | while (expr) stmt
$\left.\begin{array}{l}\text { assignment }::=\operatorname{expr}=\operatorname{expr} \\ \text { whileStmt }::=\text { while (expr) stmt }\end{array}\right\}$ now unreachable

4) Unit Production Elimination Algorithm

- If there is a unit production
$\mathrm{X}::=\mathrm{Y} \quad$ put an edge (X, Y) into graph
- If there is a path from X to Z in the graph, and there is rule $Z::=s_{1} s_{2} \ldots s_{n}$ then add rule

$$
X::=s_{1} s_{2} \ldots s_{n}
$$

At the end, remove all unit productions.

$$
\begin{aligned}
\text { program }: & :=\text { expr }=\text { expr | while (expr) stmt } \\
& \mid \text { stmt ; stmtSeq }
\end{aligned}
$$

stmtSeq ::= expr = expr | while (expr) stmt
| stmt; stmtSeq
stmt ::= expr = expr | while (expr) stmt

5) No more than 2 symbols on RHS

stmt ::= while (expr) stmt
becomes

stmt ::= while stmt ${ }_{1}$
$\mathrm{stmt}_{1}::=$ (stmt $_{2}$
$\operatorname{stmt}_{2}::=$ expr stmt $_{3}$
stmt $_{3}::=$) stmt
6) A non-terminal for each terminal
stmt ::= while (expr) stmt
becomes

stmt ::= $\mathrm{N}_{\text {while }} \mathrm{stmt}_{1}$
stmt $_{1}::=\mathrm{N}_{1}$ stmt $_{2}$
stmt $_{2}::=$ expr stmt $_{3}$
stmt $_{3}::=N$, stmt
$N_{\text {while }}::=$ while
$\mathrm{N}_{1}::=$ (
$N_{1}::=$)

Order of steps in conversion to CNF

1. remove unproductive symbols
2. Reduce arity of every production to $<=2$
3. remove epsilons (no non-start nullable symbols)
4. remove unit productions $X::=Y$
5. make terminals occur alone on right-hand side
6. remove unreachable symbols

- What if we swap the steps 2 and 3 ?
- Potentially exponential blow-up in the \# of productions
- What if we swap the steps 3 and 4 ?
- Epsilon removal can introduce unit productions

Parsing using CYK Algorithm

- Transform grammar into Chomsky Form:
- Have only rules $\mathrm{X}::=\mathrm{Y} \mathrm{Z}, \mathrm{X}::=\mathrm{t}$, and possibly $\mathrm{S}::=$ ""
- Apply CYK dynamic programming algorithm

