
CYK Algorithm for Parsing
General Context-Free Grammars

Why Parse General Grammars
• Can be difficult or impossible to make

grammar unambiguous

– thus LL(k) and LR(k) methods cannot work,
for such ambiguous grammars

• Some inputs are more complex than simple
programming languages

– mathematical formulas:
x = y /\ z ? (x=y) /\ z x = (y /\ z)

– natural language:

I saw the man with the telescope.

– future programming languages

Ambiguity

I saw the man with the telescope.

1)

2)

CYK Parsing Algorithm

C:
John Cocke and Jacob T. Schwartz (1970). Programming languages and their compilers:
Preliminary notes. Technical report, Courant Institute of Mathematical Sciences, New York
University.

Y:
Daniel H. Younger (1967). Recognition and parsing of context-free languages in time n3.
Information and Control 10(2): 189–208.

K:
T. Kasami (1965). An efficient recognition and syntax-analysis algorithm for context-free
languages. Scientific report AFCRL-65-758, Air Force Cambridge Research Lab, Bedford, MA.

http://en.wikipedia.org/wiki/John_Cocke
http://en.wikipedia.org/wiki/Courant_Institute_of_Mathematical_Sciences
http://en.wikipedia.org/wiki/New_York_University
http://en.wikipedia.org/wiki/Tadao_Kasami
http://en.wikipedia.org/wiki/Bedford,_MA

Two Steps in the Algorithm

1) Transform grammar to normal form
called Chomsky Normal Form

(Noam Chomsky, mathematical linguist)

2) Parse input using transformed grammar
dynamic programming algorithm

“a method for solving complex problems by breaking them

down into simpler steps.

It is applicable to problems exhibiting the properties of

overlapping subproblems”

Balanced Parentheses Grammar

Original grammar G

S “” | (S) | S S

Modified grammar in Chomsky Normal Form:

S “” | S’

S’ N(NS) | N(N) | S’ S’
NS) S’ N)

N((
N))

• Terminals: () Nonterminals: S S’ NS) N) N(

Idea How We Obtained the Grammar

S (S)

S’ N(NS) | N(N)

N((

NS) S’ N)

N))
Chomsky Normal Form transformation

can be done fully mechanically

Because S can be empty

but S’ cannot

Dynamic Programming to Parse Input

Assume Chomsky Normal Form, 3 types of rules:

S “” | S’ (only for the start non-terminal)

Nj t (names for terminals)

Ni Nj Nk (just 2 non-terminals on RHS)

Decomposing long input:

find all ways to parse substrings of length 1,2,3,…

((() ()) ()) (())

Ni

Nk
Nj

Parsing an Input
S’ N(NS) | N(N) | S’ S’
NS) S’ N)

N((
N))

N(N(N) N(N) N(N) N)1

2

3

4

5

6

7
ambiguity

(() () ())

1 2 3 4 5 6 8 9

(() () ())

Algorithm Idea

1 N(N(N) N(N) N(N) N)

2

3

4

5

6

7
wpq – substring from p to q

dpq – all non-terminals that
could expand to wpq

Initially dpp has Nw(p,p)

key step of the algorithm:

if X Y Z is a rule,
Y is in dp r , and
Z is in d(r+1)q

then put X into dpq

(p <= r < q),

in increasing value of (q-p)
1 2 3 4 5 6 8 9

Algorithm
INPUT: grammar G in Chomsky normal form

word w to parse using G
OUTPUT: true iff (w in L(G))
N = |w|
var d : Array[N][N]
for p = 1 to N {

d(p)(p) = {X | G contains X->w(p)}
for q in {p + 1 .. N} d(p)(q) = {} }

for k = 2 to N // substring length
for p = 0 to N-k // initial position
for j = 1 to k-1 // length of first half
val r = p+j-1; val q = p+k-1;
for (X::=Y Z) in G
if Y in d(p)(r) and Z in d(r+1)(q)

d(p)(q) = d(p)(q) union {X}
return S in d(0)(N-1)

(() () ())

What is the running time
as a function of grammar
size and the size of input?

O()

http://scala-lang.org/
http://scala-lang.org/
http://scala-lang.org/
http://scala-lang.org/
http://scala-lang.org/
http://scala-lang.org/
http://scala-lang.org/
http://scala-lang.org/
http://scala-lang.org/

Parsing another Input
S’ N(NS) | N(N) | S’ S’
NS) S’ N)

N((
N))

() () () ()

N(N) N(N) N(N) N(N)1

2

3

4

5

6

7

Number of Parse Trees

• Let w denote word ()()()

– it has two parse trees

• Give a lower bound on number of parse trees
of the word wn (n is positive integer)

w5 is the word

()()() ()()() ()()() ()()() ()()()

• CYK represents all parse trees compactly

– can re-run algorithm to extract first parse tree, or
enumerate parse trees one by one

Conversion to Chomsky Normal Form
(CNF)

• Steps:

1. remove unproductive symbols

2. remove unreachable symbols

3. remove epsilons (no non-start nullable symbols)

4. remove single non-terminal productions (unit
Productions): X::=Y

5. reduce arity of every production to less than two

6. make terminals occur alone on right-hand side

1) Unproductive non-terminals

What is funny about this grammar:

stmt ::= identifier := identifier
| while (expr) stmt
| if (expr) stmt else stmt

expr ::= term + term | term – term
term ::= factor * factor
factor ::= (expr)

There is no derivation of a sequence of tokens from expr

In every step will have at least one expr, term, or factor

If it cannot derive sequence of tokens we call it unproductive

1) Unproductive non-terminals

• Productive symbols are obtained using these
two rules (what remains is unproductive)

– Terminals are productive

– If X::= s1 s2 … sn is a rule and each si is productive
then X is productive

stmt ::= identifier := identifier
| while (expr) stmt
| if (expr) stmt else stmt

expr ::= term + term | term – term
term ::= factor * factor
factor ::= (expr)
program ::= stmt | stmt program

Delete unproductive
symbols.

The language
recognized by the
grammar will not
change

2) Unreachable non-terminals

What is funny about this grammar with start
symbol ‘program’

program ::= stmt | stmt program
stmt ::= assignment | whileStmt

assignment ::= expr = expr

ifStmt ::= if (expr) stmt else stmt
whileStmt ::= while (expr) stmt
expr ::= identifier

No way to reach symbol ‘ifStmt’ from ‘program’

Can we formulate rules for reachable symbols ?

2) Unreachable non-terminals

• Reachable terminals are obtained using the
following rules (the rest are unreachable)

– starting non-terminal is reachable (program)

– If X::= s1 s2 … sn is rule and

• Delete unreachable nonterminals and their
productions

X is reachable then
every non-terminal in s1 s2 … sn is reachable

3) Removing Empty Strings

Ensure only top-level symbol can be nullable

program ::= stmtSeq
stmtSeq ::= stmt | stmt ; stmtSeq
stmt ::= “” | assignment | whileStmt | blockStmt
blockStmt ::= { stmtSeq }
assignment ::= expr = expr
whileStmt ::= while (expr) stmt
expr ::= identifier

How to do it in this example?

3) Removing Empty Strings - Result

program ::= “” | stmtSeq
stmtSeq ::= stmt| stmt ; stmtSeq |

| ; stmtSeq | stmt ; | ;
stmt ::= assignment | whileStmt | blockStmt
blockStmt ::= { stmtSeq } | { }
assignment ::= expr = expr
whileStmt ::= while (expr) stmt
whileStmt ::= while (expr)
expr ::= identifier

3) Removing Empty Strings - Algorithm

• Compute the set of nullable non-terminals

• If X::= 𝑠1⋯𝑠𝑛 is a production and 𝑠𝑖 is nullable then
add new rule

– X::= 𝑠1⋯𝑠𝑖−1𝑠𝑖+1⋯𝑠𝑛 | 𝑠1⋯𝑠𝑛

• Remove all empty right-hand sides

• If starting symbol S was nullable, then introduce a
new start symbol S’ instead, and add rule S’ ::= S | “”

3) Removing Empty Strings

• Since stmtSeq is nullable, the rule
blockStmt ::= { stmtSeq }

gives
blockStmt ::= { stmtSeq } | { }

• Since stmtSeq and stmt are nullable, the rule
stmtSeq ::= stmt | stmt ; stmtSeq

gives
stmtSeq ::= stmt | stmt ; stmtSeq

| ; stmtSeq | stmt ; | ;

4) Eliminating unit productions

• Single production is of the form

X ::=Y

where X,Y are non-terminals

program ::= stmtSeq
stmtSeq ::= stmt

| stmt ; stmtSeq
stmt ::= assignment | whileStmt
assignment ::= expr = expr
whileStmt ::= while (expr) stmt

4) Eliminate unit productions - Result

program ::= expr = expr | while (expr) stmt
| stmt ; stmtSeq

stmtSeq ::= expr = expr | while (expr) stmt
| stmt ; stmtSeq

stmt ::= expr = expr | while (expr) stmt
assignment ::= expr = expr
whileStmt ::= while (expr) stmt

4) Unit Production Elimination
Algorithm

• If there is a unit production

X ::=Y put an edge (X,Y) into graph

• If there is a path from X to Z in the graph, and
there is rule Z ::= s1 s2 … sn then add rule

program ::= expr = expr | while (expr) stmt
| stmt ; stmtSeq

stmtSeq ::= expr = expr | while (expr) stmt
| stmt ; stmtSeq

stmt ::= expr = expr | while (expr) stmt

X ::= s1 s2 … sn

At the end, remove all unit productions.

5) No more than 2 symbols on RHS

stmt ::= while (expr) stmt

becomes

stmt ::= while stmt1

stmt1 ::= (stmt2

stmt2 ::= expr stmt3

stmt3 ::=) stmt

6) A non-terminal for each terminal

stmt ::= while (expr) stmt

becomes

stmt ::= Nwhile stmt1

stmt1 ::= N(stmt2

stmt2 ::= expr stmt3

stmt3 ::= N) stmt
Nwhile ::= while
N(::= (
N) ::=)

Order of steps in conversion to CNF
1. remove unproductive symbols

2. Reduce arity of every production to <= 2

3. remove epsilons (no non-start nullable symbols)

4. remove unit productions X::=Y

5. make terminals occur alone on right-hand side

6. remove unreachable symbols

– What if we swap the steps 2 and 3 ?

• Potentially exponential blow-up in the # of productions

– What if we swap the steps 3 and 4 ?

• Epsilon removal can introduce unit productions

Parsing using CYK Algorithm

• Transform grammar into Chomsky Form:

– Have only rules X ::= Y Z, X ::= t, and possibly S ::=
“”

• Apply CYK dynamic programming algorithm

