Exercises on Grammars

1. Consider the following grammar:
S->(L) | a

L->L,S|S

e |s this grammar ambiguous ?

e |s this grammar LL(1) ?

e Compute the First and Follow sets for the new
grammar.

e Construct the parsing table for the LL(1) parser

Finding an LL(1) grammar

e No procedural way ! Practice ...

e But there are some recommended practices that
generally help in finding one.

e Eg. try to eliminate left recursion.

— There is a procedure for this but you don’t have to
faithfully follow the entire approach.

— Just think of what left recursion brings and what can be
done to eliminate them

Removing Left Recursion

S->(L) | a
L->L,S|S
e How does a derivation starting from ‘L’ look ?
e L=>L,S
=>1L,S,S
=>*L,S,..,S
=>S,...,S
e L->L,S|S isequivalenttoL->S,L|S
S->(L)|a
L->S,L|S

Removing Left Recursion

Ingeneral,L-> La | B; | ... | By,
L-> B2 | bnZ B | | Bn
> all|e

This will remove immediate recursion but only when
there are no epsilon productions in the grammar

Otherwise, we need to remove epsilon productions
which will discussed along with CYK parsing

Removing indirect recursion
S->La
L->Sa | b

Removing Left Recursion

Order nonterminals Eg. (1) S, (2) L

Enforce that if A -> B then A should precede B in the
ordering

S->LaandL->b satisfy the constraint but L->S a
doesn’t

Inline the productionof SinL->S a

We get,L->Laa | b, Remove left recursion.
— Result:L->bZ | b Z->aalle€

If inlining does not result in left recursive production
or doesn’t satisfy the constraints, inline again.

Example 1 [Cont.]

S->(L)|a
L->L,S|S

e After eliminating left recursion
S->(L)|a

L->S,L|S

e |s this LL(1) now ?

Example 1 [Cont.]

S->(L)|a
L->L,S|S

e After eliminating left recursion
S->(L)|a

L->S,L|S

e |s this LL(1) now ?

Left factorization

S->(L)|a
L->S,L]|S

e |dentify a common prefix and push the suffixes to a
new nonterminal.

S->(L)|a

L->S7Z

Z->,L| €

e |sthis LL(1) now ? Yes

Exercise 1 - First and Follow sets
(with EOF)

Let’s compute first and follow sets after adding EOF to the end
of the start symbol productions

S->(L)EOF | a EOF

L->SZ

Z->,L|e€

e First(S) 2 First((L)) U First(a) = { (, a}
e First(L) 2 First(SZ) = First(S)

e First(Z) 2 First(, L) = {,}

e Follow(S) 2 Follow(L) U Follow(Z)

e Follow(L) 2{)}U Follow(Z)

e Follow(Z) 2 Follow(L)

First and Follow sets [Cont.]

S->(L)EOF | aEOF
L->SZ
Z->,L|€

e Solution to the above constraints:

- First(S) = First(L) = {(, a}

- First(Z) = {,}

- Follow(S) = Follow(L) = Follow(Z) = {)}
e Moreover, Z is Nullable

LL(1) parsing table

(1) S->(L)
(2) S-> a
3)L->SZ
(4)Z->,L
(5)Z->¢€

Error Error Error
L 3 3 Error Error Error
Error Error 5 4 Error

Exercise 2

Consider a grammar for expressions where the
multiplication sign is optional.

ex::=ex+ex | ex*ex|exex|ID

e Find a LL(1) grammar recognizing the same language
e Create the LL(1) parsing table.

Exercise 2 — Solution

First let’s make the grammar unambiguous by
associating precedence with operators

In the process we also made sure that the grammar
does not have left recursion

ex::=S+ex| S
S:=ID*S|IDS | ID
Left factorization:

ex::=S/
Z:=+ex| €
S::=1ID Z2

Z2::=*S|S | €

Exercise 2 — LL(1) parsing table

ex ::=SZEOF
Z:=+ex| e
S::=1ID Z2

Z2::=*S|S | €

First let’s compute first and follow sets after adding
EOF to the end of the start symbol productions

— First(ex) = First(S)={ ID }

— First(Z)={+} First(z2)={*,ID}

— Follow(ex) = Follow(Z) = { EOF }

— Follow(S) = Follow(Z2) = { EOF, +}

Z and Z2 are nullable

N o Uk WD RE

ex::=SZ
/ =+ exX
L= €
S:=1IDZ2
Z2 ::=*S
L2 =S
[2 .= €

LL(1) parsing table

Error Error Error
Z Error 2 Error 3
S 4 Error Error Error
Z2 6 7 5 7

Exercise 3

Balanced Parentheses over {(, [}
S::=(S)|[S]]|SS| e

e Find a LL(1) grammar recognizing the language

Exercise 3 - Solution

S:=(S)|[S]|SS|€
‘S” produces epsilon. Hence, we need to first

eliminate epsilon (discussed later) and then remove
left recursion from S::=SS

Instead, let’s apply the same logic as removing left
recursion but without performing all the steps.

The role of the production S ::=S S is to produce a
sequence of S that begin with either (S)or[S]. i.e,

—(S)SS...S

Exercise 3 - Solution

e Each of the successive S 'es can rewrite to either (S)
or [S]. Thatis, in essence S ::=S S produces
sequences given by the regular expression ((S) | [S
J)*

— Eg(S)(S)S... isone such sequence

e The same effect can be achieved by the right
recursive rules
—S:=(S)S|[S]S | €

e The above grammar is LL(1)

Exercise 4

Prove that every LL(1) grammar is unambiguous.

Solution to Exercise 4

Intuition:

Every production of a non-terminal belonging to an LL(1)
grammar generates a set of strings that is completely disjoint
from the other alternatives because of the following two

reasons:

(a) For every nonterminal, the first sets of every alternative are
disjoint which implies that they produce disjoint non-empty
strings

(b) There is at most one production for a non-terminal that can
produce an empty string

Formal proof is presented in the next slide

Solution to Exercise 4 [Cont.]

Claim : Every string w derivable from every non-terminal N has a
unique left most derivation.

e Proof by contradiction: Say D;: N =" wand D,: N =" w be two
derivations for w

e D; and D, should diverge at some point. Let x we be prefix of w
that is derived just before the point where D; and D, diverge. That
IS

- Dy =" xAa = xfa=>"w
- Dy, =% xAa = xya =" w,
e where Ais a non-terminal, and a, 8,y are sequence of terminals
and non-terminals, and § # y

e Ifx =wthenfa =" €andya =" €. Hence, there are two nullable
alternatives for A which is a contradiction

2.

3.

Solution to Exercise 4 [Cont.]

Therefore, say |x| < |w/|. This implies that the next input character is
Wix+1 = @ (say)

Informally this means that both A — y and A — [are applicable on
seeing the input character a which contradicts the LL(1) property.

Formally, given a € first(fa) and a € first(ya)

If both f and y reduce to empty string (€) in the derivations D; and D,
then there are two nullable productions for A, which is a contradiction

If one of § and y reduce to empty string and other doesn’t

Let B =" € and y derive a non-empty string

Since a € first(ya) and y derives non-empty string, a € first(y), which also
implies that a € first(A4)

Since a € first(fa) and f derives empty string, a € first(a)

Since S =" xAaq, first(a) € follow(A) . Hence, a € follow(4)

Thus, a € follow(A) N first(A) and A is nullable, which contradicts LL(1) property

Finally, if both 8 and y derive non-empty strings then a € first(f8) N
first(y) again contradicting LL(1) property

Corollary of the proof

e The preceding proof not just proves that every string has a
unique left most derivation in a LL(1) grammar but also
proves the following:

e |f two strings u and v share a common prefix X’ , then the
derivations of u and v cannot diverge before generating the

prefix X.

e That is the derivations of u and v should be of the form:
-S=" xa=" xu
-S=" xa=" xv

Exercise 5

Say that a grammar has a cycle if there is a reachable,
productive non-terminal A such that A =%A, i.e. itis
possible to derive the nonterminal A from A by a
nonempty sequence of production rules.

Show that if a grammar has a cycle, then it is not LL(1).

Solution to Exercise 5

We proved before that LL(1) grammars are not ambiguous
Consider a left most derivation D that contains A

D: S=" xAf=>"w

— Where, x is a (possibly empty) sequence of terminals and

— [is a sentential form

— Such a derivation must exist as A is reachable (from the start symbol)
and also productive

Using A =1 A, we can derive another derivation for w

D': S =" xAB =1 xAB =>* w

There exists two left most derivations and hence two parse
trees for w

The grammar is ambiguous and hence cannot be LL(1)

Exercise 6

Show that the regular languages can be recognized
with LL(1) parsers. Describe a process that, given a
regular expression, constructs an LL(1) parser for it.

Solution for Exercise 6

e Let the DFA for the regular language be A :
(Z, Q'qO ,6,F)
e Define agrammar G: (N, T, P, S) where,

e N={S5[1=<i<|Q|}

e T =X

e S= 5,

e 5(q,a) =q;=>S;>aS;EP

e g;EF=>S5 —-€€P
L(A) = L(G)

Exercise 7/

Show that the language { a"b™ | n > m} cannot have
an LL(1) grammar ?

Note that the following grammar recognizes the
language but is not LL(1)

S->aS|P
P->aPb|a

This question interesting but is quite difficult. A proof
for this is provided in a separate pdf file in the lara wiki.

This is meant only as a supplementary material to
provide more insights into LL(1) grammars.

It is not essential to fully understand the proof of this
atie<tion

