Exercises on Grammars

1. Consider the following grammar:

S-> (L) | a
L->L,S|S

- Is this grammar ambiguous?
- Is this grammar LL(1) ?
- Compute the First and Follow sets for the new grammar.
- Construct the parsing table for the $\operatorname{LL}(1)$ parser

Finding an LL(1) grammar

- No procedural way ! Practice ...
- But there are some recommended practices that generally help in finding one.
- Eg. try to eliminate left recursion.
- There is a procedure for this but you don't have to faithfully follow the entire approach.
- Just think of what left recursion brings and what can be done to eliminate them

Removing Left Recursion

$S->(L) \mid a$
L->L, S | S

- How does a derivation starting from 'L' look ?
- L => L, S

$$
\begin{aligned}
& =>L, S, S \\
& ={ }^{*} L, S, \ldots, S \\
& =S, \ldots, S
\end{aligned}
$$

- $L->L, S \mid S$ is equivalent to $L->S, L \mid S$

$$
\begin{aligned}
& S->(L) \mid a \\
& L->S, L \mid S
\end{aligned}
$$

Removing Left Recursion

- In general, $\mathrm{L}->\mathrm{L} \alpha\left|\beta_{1}\right| \ldots \mid \beta_{n}$
- L-> $\beta_{1} Z|\ldots| \beta_{n} Z\left|\beta_{1}\right| \ldots \mid \beta_{n}$
- Z-> α Z| ϵ
- This will remove immediate recursion but only when there are no epsilon productions in the grammar
- Otherwise, we need to remove epsilon productions which will discussed along with CYK parsing
- Removing indirect recursion

$$
\begin{aligned}
& S->L a \\
& L->S a \mid b
\end{aligned}
$$

Removing Left Recursion

- Order nonterminals Eg. (1) S , (2) L
- Enforce that if A -> B then A should precede B in the ordering
- S-> L a and L -> b satisfy the constraint but L-> S a doesn't
- Inline the production of S in $L->S$ a
- We get, L-> La a |b, Remove left recursion.
- Result:L->bZ|b Z->aaZ| ϵ
- If inlining does not result in left recursive production or doesn't satisfy the constraints, inline again.

Example 1 [Cont.]

$$
\begin{aligned}
& S->(L) \mid a \\
& L->L, S \mid S
\end{aligned}
$$

- After eliminating left recursion

S-> (L) |a
L->S,L|S

- Is this LL(1) now ?

Example 1 [Cont.]

$$
\begin{aligned}
& S->(L) \mid a \\
& L->L, S \mid S
\end{aligned}
$$

- After eliminating left recursion

S-> (L) |a
L->S,L|S

- Is this LL(1) now ?

Left factorization

S-> (L) |a
L-> S, L | S

- Identify a common prefix and push the suffixes to a new nonterminal.

S-> (L) |a
L-> S Z
Z->, L| ϵ

- Is this LL(1) now ? Yes

Exercise 1 - First and Follow sets (with EOF)

Let's compute first and follow sets after adding EOF to the end of the start symbol productions
S-> (L) EOF \| a EOF
L-> S Z
Z->, L| ϵ

- $\operatorname{First}(S) \supseteq \operatorname{First}((L)) \cup \operatorname{First}(a)=\{(, a\}$
- $\operatorname{First}(L) \supseteq \operatorname{First}(S Z)=\operatorname{First}(S)$
- $\operatorname{First}(Z) \supseteq \operatorname{First}(, L)=\{$,
- Follow $(S) \supseteq$ Follow $(L) \cup$ Follow (Z)
- Follow $(L) \supseteq)\} \cup$ Follow (Z)
- Follow $(Z) \supseteq$ Follow (L)

First and Follow sets [Cont.]

S-> (L) EOF \| a EOF
L-> S Z
Z->,L|E

- Solution to the above constraints:
- $\operatorname{First}(S)=\operatorname{First}(L)=\{(, a\}$
- $\operatorname{First}(Z)=\{$,
- $\operatorname{Follow}(S)=\operatorname{Follow}(L)=\operatorname{Follow}(Z)=\{)\}$
- Moreover, \mathbf{Z} is Nullable

LL(1) parsing table

(1) $S \rightarrow(L)$
(2) $S \rightarrow a$
(3) $L \rightarrow S$ Z
(4) $Z->$, L
(5) $\mathrm{Z} \rightarrow \boldsymbol{\rightarrow}$

	a	$($	$)$	EOF	
S	2	1	Error	Error	Error
L	3	3	Error	Error	Error
Z	Error	Error	5	4	Error

Exercise 2

Consider a grammar for expressions where the multiplication sign is optional.
ex ::= ex + ex | ex * ex | ex ex |ID

- Find a $\mathrm{LL}(1)$ grammar recognizing the same language
- Create the LL(1) parsing table.

Exercise 2 - Solution

- First let's make the grammar unambiguous by associating precedence with operators
- In the process we also made sure that the grammar does not have left recursion
- ex ::= S + ex | S
- S ::= ID * S |ID S | ID
- Left factorization:
- ex ::= S Z
- Z ::= +ex| ϵ
- S ::= ID Z2
- Z2 ::= * S | S | ϵ

Exercise 2 - LL(1) parsing table

- ex ::= S Z EOF
- Z ::= +ex| ϵ
- S ::= ID Z2
- Z2 ::=*S|S|E
- First let's compute first and follow sets after adding EOF to the end of the start symbol productions
- First(ex) $=$ First(S) $=\{$ ID $\}$
- First(Z) $=\{+\} \quad \operatorname{First}(Z 2)=\{*, I D\}$
- Follow(ex) $=$ Follow(Z) $=\{$ EOF $\}$
- Follow(S) = Follow(Z2) = \{EOF, + \}
- Z and Z2 are nullable

LL(1) parsing table

1. ex ::=S Z
2. $Z::=+e x$
3. $\mathrm{Z}::=\epsilon$
4. $S::=$ ID Z2
5. Z2 ::=*S
6. $\mathrm{Z} 2::=\mathrm{S}$
7. Z2 ::= ϵ

	ID	+	*	EOF
ex	1	Error	Error	Error
Z	Error	2	Error	3
S	4	Error	Error	Error
Z2	6	7	5	7

Exercise 3

Balanced Parentheses over \{ (, [\}
S ::= (S)|[S]|SS|E

- Find a $\mathrm{LL}(1)$ grammar recognizing the language

Exercise 3 - Solution

- S ::= (S)|[S]|SS| ϵ
- ' S ’ produces epsilon. Hence, we need to first eliminate epsilon (discussed later) and then remove left recursion from $\mathrm{S}::=\mathrm{S}$ S
- Instead, let's apply the same logic as removing left recursion but without performing all the steps.
- The role of the production $S::=S$ is to produce a sequence of S that begin with either (S) or [S]. i.e,
- (S) S S S
- [S] S S....... S

Exercise 3 - Solution

- Each of the successive S 'es can rewrite to either (S) or [S]. That is, in essence S ::= S S produces sequences given by the regular expression ((S) | [S]) *
- E.g(S)(S)S... is one such sequence
- The same effect can be achieved by the right recursive rules
- S::=(S)S|[S]S| ϵ
- The above grammar is $\mathrm{LL}(1)$

Exercise 4

Prove that every $\mathrm{LL}(1)$ grammar is unambiguous.

Solution to Exercise 4

Intuition:

Every production of a non-terminal belonging to an $\operatorname{LL}(1)$ grammar generates a set of strings that is completely disjoint from the other alternatives because of the following two reasons:
(a) For every nonterminal, the first sets of every alternative are disjoint which implies that they produce disjoint non-empty strings
(b) There is at most one production for a non-terminal that can produce an empty string

Formal proof is presented in the next slide

Solution to Exercise 4 [Cont.]

Claim : Every string w derivable from every non-terminal N has a unique left most derivation.

- Proof by contradiction: Say $\mathrm{D}_{1}: N \Rightarrow^{*} w$ and $\mathrm{D}_{2}: N \Rightarrow^{*} w$ be two derivations for w
- D_{1} and D_{2} should diverge at some point. Let x we be prefix of w that is derived just before the point where D_{1} and D_{2} diverge. That is

$$
\begin{aligned}
& -D_{1} \Rightarrow^{*} x A \alpha \Rightarrow x \beta \alpha \Rightarrow^{*} w \\
& -D_{2} \Rightarrow^{*} x A \alpha \Rightarrow x \gamma \alpha \Rightarrow^{*} w,
\end{aligned}
$$

- where A is a non-terminal, and α, β, γ are sequence of terminals and non-terminals, and $\beta \neq \gamma$
- If $x=w$ then $\beta \alpha \Rightarrow^{*} \epsilon$ and $\gamma \alpha \Rightarrow^{*} \epsilon$. Hence, there are two nullable alternatives for A which is a contradiction

Solution to Exercise 4 [Cont.]

- Therefore, say $|x|<|w|$. This implies that the next input character is $w_{|x|+1}=a$ (say)
- Informally this means that both $A \rightarrow \gamma$ and $A \rightarrow \beta$ are applicable on seeing the input character a which contradicts the $\mathrm{LL}(1)$ property.
- Formally, given $a \in \operatorname{first}(\beta \alpha)$ and $a \in \operatorname{first}(\gamma \alpha)$

1. If both β and γ reduce to empty string (ϵ) in the derivations D_{1} and D_{2} then there are two nullable productions for A , which is a contradiction
2. If one of β and γ reduce to empty string and other doesn't

- Let $\beta \Rightarrow^{*} \epsilon$ and γ derive a non-empty string
- Since $a \in \operatorname{first}(\gamma \alpha)$ and γ derives non-empty string, $a \in \operatorname{first}(\gamma)$, which also implies that $a \in \operatorname{first}(A)$
- \quad Since $a \in \operatorname{first}(\beta \alpha)$ and β derives empty string, $a \in \operatorname{first}(\alpha)$
- \quad Since $S \Rightarrow^{*} x A \alpha$, first $(\alpha) \subseteq$ follow (A). Hence, $a \in \operatorname{follow}(A)$
- Thus, $a \in \operatorname{follow}(A) \cap \operatorname{first}(A)$ and A is nullable, which contradicts $\mathrm{LL}(1)$ property

3. Finally, if both β and γ derive non-empty strings then $a \in \operatorname{first}(\beta) \cap$ first (γ) again contradicting LL(1) property

Corollary of the proof

- The preceding proof not just proves that every string has a unique left most derivation in a LL(1) grammar but also proves the following:
- If two strings u and v share a common prefix ' x ', then the derivations of u and v cannot diverge before generating the prefix ' x '.
- That is the derivations of u and v should be of the form:
- $S \Rightarrow^{*} x \alpha \Rightarrow^{*} x u$
$-S \Rightarrow^{*} x \alpha \Rightarrow^{*} x v$

Exercise 5

Say that a grammar has a cycle if there is a reachable, productive non-terminal A such that $A \Rightarrow^{+} A$, i.e. it is possible to derive the nonterminal A from A by a nonempty sequence of production rules.

Show that if a grammar has a cycle, then it is not $\operatorname{LL}(1)$.

Solution to Exercise 5

- We proved before that LL(1) grammars are not ambiguous
- Consider a left most derivation D that contains A
- D: $S \Rightarrow^{*} x A \beta \Rightarrow^{*} w$
- Where, x is a (possibly empty) sequence of terminals and
- β is a sentential form
- Such a derivation must exist as A is reachable (from the start symbol) and also productive
- Using $\mathrm{A} \Rightarrow^{+} \mathrm{A}$, we can derive another derivation for w
- $\mathrm{D}^{\prime}: S \Rightarrow^{*} x A \beta \Rightarrow^{+} x A \beta \Rightarrow^{*} w$
- There exists two left most derivations and hence two parse trees for w
- The grammar is ambiguous and hence cannot be $\operatorname{LL}(1)$

Exercise 6

Show that the regular languages can be recognized with $\mathrm{LL}(1)$ parsers. Describe a process that, given a regular expression, constructs an LL(1) parser for it.

Solution for Exercise 6

- Let the DFA for the regular language be A : $\left(\Sigma, Q, q_{0}, \delta, F\right)$
- Define a grammar G: (N, T, P, S) where,
- $\mathrm{N}=\left\{S_{i}|1 \leq i \leq|Q|\}\right.$
- $\mathrm{T}=\Sigma$
- $\mathrm{S}=S_{0}$
- $\delta\left(q_{i}, a\right)=q_{j} \Rightarrow S_{i} \rightarrow a S_{j} \in P$
- $q_{i} \in F \Rightarrow S_{i} \rightarrow \epsilon \in P$

$$
L(A)=L(G)
$$

Exercise 7

Show that the language $\left\{a^{n} b^{m} \mid n>m\right\}$ cannot have an $\mathrm{LL}(1)$ grammar ?
Note that the following grammar recognizes the language but is not $\mathrm{LL}(1)$
S-> $\mathrm{S} \mid \mathrm{P}$
P->aPb|a
This question interesting but is quite difficult. A proof for this is provided in a separate pdf file in the lara wiki.
This is meant only as a supplementary material to provide more insights into $\mathrm{LL}(1)$ grammars.
It is not essential to fully understand the proof of this auestion

