
Exercises on Grammars

1. Consider the following grammar:

S -> (L) | a

L -> L , S | S

• Is this grammar ambiguous ?

• Is this grammar LL(1) ?

• Compute the First and Follow sets for the new
grammar.

• Construct the parsing table for the LL(1) parser

Finding an LL(1) grammar

• No procedural way ! Practice …

• But there are some recommended practices that
generally help in finding one.

• Eg. try to eliminate left recursion.

– There is a procedure for this but you don’t have to
faithfully follow the entire approach.

– Just think of what left recursion brings and what can be
done to eliminate them

Removing Left Recursion

S -> (L) | a

L -> L , S | S

• How does a derivation starting from ‘L’ look ?

• L => L , S

=> L , S , S

=>* L , S , … , S

=> S , … , S

• L -> L , S | S is equivalent to L -> S , L | S

S -> (L) | a

L -> S , L | S

Removing Left Recursion

• In general, L -> L 𝛼 | 𝛽1 | … | 𝛽𝑛
• L -> 𝛽1 Z | … | 𝛽𝑛 Z | 𝛽1 | … | 𝛽𝑛
• Z -> 𝛼 Z | 𝜖

• This will remove immediate recursion but only when
there are no epsilon productions in the grammar

• Otherwise, we need to remove epsilon productions
which will discussed along with CYK parsing

• Removing indirect recursion

S -> L a

L -> S a | b

Removing Left Recursion

• Order nonterminals Eg. (1) S , (2) L

• Enforce that if A -> B then A should precede B in the
ordering

• S -> L a and L -> b satisfy the constraint but L -> S a
doesn’t

• Inline the production of S in L -> S a

• We get, L -> L a a | b , Remove left recursion.

– Result: L -> b Z | b Z -> a a Z | 𝜖

• If inlining does not result in left recursive production
or doesn’t satisfy the constraints, inline again.

Example 1 [Cont.]

S -> (L) | a

L -> L , S | S

• After eliminating left recursion

S -> (L) | a

L -> S , L | S

• Is this LL(1) now ?

Example 1 [Cont.]

S -> (L) | a

L -> L , S | S

• After eliminating left recursion

S -> (L) | a

L -> S , L | S

• Is this LL(1) now ?

Left factorization

S -> (L) | a

L -> S , L | S

• Identify a common prefix and push the suffixes to a
new nonterminal.

S -> (L) | a

L -> S Z

Z -> , L | 𝜖

• Is this LL(1) now ? Yes

Exercise 2

Consider a grammar for expressions where the
multiplication sign is optional.

ex ::= ex + ex | ex * ex | ex ex |ID

• Find a LL(1) grammar recognizing the same language

• Create the LL(1) parsing table.

Exercise 2 – Solution

• First let’s make the grammar unambiguous by
associating precedence with operators

• In the process we also made sure that the grammar
does not have left recursion

• ex ::= S + ex | S

• S ::= ID * S | ID S | ID

• Left factorization:

• ex ::= S Z

• Z ::= + ex | 𝜖

• S ::= ID Z2

• Z2 ::= * S | S | 𝜖

Exercise 3

Balanced Parentheses over { (, [}

S ::= (S)| [S] | S S | 𝜖

• Find a LL(1) grammar recognizing the language

Exercise 3 - Solution

• S ::= (S)| [S] | S S | 𝜖

• ‘S’ produces epsilon. Hence, we need to first
eliminate epsilon (discussed later) and then remove
left recursion from S ::= S S

• Instead, let’s apply the same logic as removing left
recursion but without performing all the steps.

• The role of the production S ::= S S is to produce a
sequence of S that begin with either (S) or [S]. i.e,

– (S) S S …. S

– [S] S S……. S

Exercise 3 - Solution

• Each of the successive S ’es can rewrite to either (S)
or [S]. That is, in essence S ::= S S produces
sequences given by the regular expression ((S) | [S
]) *

– E.g (S) (S) [S] (S) … is one such sequence

• The same effect can be achieved by the right
recursive rules

– S ::= (S) S | [S] S | 𝜖

• The above grammar is LL(1)

Exercise 4

Prove that every LL(1) grammar is unambiguous.

Solution to Exercise 4

The answer is pretty simple. Every production of an
LL(1) generates a set of strings that is completely
disjoint from the other production simply because they
start with different terminals

Formally, for any string w there is a unique left most
derivation. We can prove this by induction over the
length of w.

Solution to Exercise 4 [Cont.]

• Claim : for all k, |w| <= k => there is a unique left most
derivation for ‘w’ from every nonterminal N such that N =>*
w

• Base case, w = 𝜖: claim holds as only one alternative can
derive epsilon for every nonterminal in an LL(1) grammar

• Inductive case, |w| = k: Let w = ax where |x| < k and ‘a’ is a
terminal of the grammar.

• For every nonterminal N, s.t N =>* w, the first rule that N uses
is the alternative of N whose First set has ‘a’

• Hence, N => 𝑎 𝛼, 𝛼 ⇒∗ 𝑥

• From hypothesis it is easy to show that there is unique
derivation for 𝛼 ⇒∗ 𝑥

• Hence, the claim holds

Exercise 5

Say that a grammar has a cycle if there is a reachable,
productive non-terminal A such that A ⇒∗A, i.e. it is
possible to derive the nonterminal A from A by a
nonempty sequence of production rules.

Show that if a grammar has a cycle, then it is not LL(1).

(the solution is provided in a separate pdf file in the
lara wiki)

Exercise 6

Show that the regular languages can be recognized
with LL(1) parsers. Describe a process that, given a
regular expression, constructs an LL(1) parser for it.

Solution for Exercise 6

• Let the DFA for the regular language be A ∶
(Σ, 𝑄, 𝑞0 , 𝛿, 𝐹)

• Define a grammar G: (N, T, P, S) where,

• N = 𝑆𝑖 1 ≤ 𝑖 ≤ 𝑄 }

• T = Σ

• S = 𝑆0

• 𝛿 𝑞𝑖 , 𝑎 = 𝑞𝑗 ⇒ 𝑆𝑖 → 𝑎 𝑆𝑗 ∈ 𝑃

• 𝑞𝑖 ∈ 𝐹 ⇒ 𝑆𝑖 → 𝜖 ∈ 𝑃

L(A) = L(G)

Exercise 7

Show that the language defined by the grammar

S -> a S | P

P -> a P b | a

cannot have a LL(1) grammar ?

Exercise 7 Solution

Intuitively, you cannot determine just by looking at the
current input character whether it will have a matching
‘b’ or it is an excess ‘a’ that will have not matching ‘b’.

Formally, we can prove this by showing that “For any
grammar for the language, there exists a nonterminal
which will have two productions whose first sets will
intersect”

(the solution is provided in a separate pdf file in the
lara wiki)

