
Exercises on Grammars

1. Consider the following grammar:

S -> ( L ) | a

L -> L , S | S

• Is this grammar ambiguous ?

• Is this grammar LL(1) ?

• Compute the First and Follow sets for the new 
grammar.

• Construct the parsing table for the LL(1) parser 



Finding an LL(1) grammar

• No procedural way ! Practice …

• But there are some recommended practices that 
generally help in finding one.

• Eg. try to eliminate left recursion. 

– There is a procedure for this but you don’t have to 
faithfully follow the entire approach. 

– Just think of what left recursion brings and what can be 
done to eliminate them



Removing Left Recursion

S -> ( L ) | a

L -> L , S | S

• How does a derivation starting from ‘L’ look ?

• L => L , S 

=> L , S , S   

=>* L , S , … , S 

=> S , … , S

• L -> L , S | S  is equivalent to L -> S , L | S 

S -> ( L ) | a

L -> S , L | S



Removing Left Recursion

• In general, L ->  L 𝛼 | 𝛽1 | … | 𝛽𝑛
• L ->  𝛽1 Z | … | 𝛽𝑛 Z | 𝛽1 | … | 𝛽𝑛
• Z -> 𝛼 Z | 𝜖

• This will remove immediate recursion but only when 
there  are no epsilon productions in the grammar

• Otherwise, we need to remove epsilon productions 
which will discussed along with CYK parsing 

• Removing indirect recursion

S -> L a

L -> S a  | b



Removing Left Recursion

• Order nonterminals Eg. (1) S , (2) L

• Enforce that if A -> B then A should precede B in the 
ordering

• S -> L a and L -> b satisfy the constraint but L -> S a
doesn’t

• Inline the production of S in L -> S a

• We get, L -> L a a | b , Remove left recursion.

– Result: L -> b Z | b  Z -> a a Z | 𝜖

• If inlining does not result in left recursive production 
or doesn’t satisfy the constraints, inline again.



Example 1 [Cont.]

S -> ( L ) | a

L -> L , S | S

• After eliminating left recursion

S -> ( L ) | a

L -> S , L | S

• Is this LL(1) now ?
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Left factorization

S -> ( L ) | a

L -> S , L | S

• Identify a common prefix and push the suffixes to a 
new nonterminal.

S -> ( L ) | a

L -> S Z

Z -> , L | 𝜖

• Is this LL(1) now ? Yes



Exercise 2

Consider a grammar for expressions where the 
multiplication sign is optional.

ex ::= ex + ex | ex * ex | ex ex |ID

• Find a LL(1) grammar recognizing the same language

• Create the LL(1) parsing table.



Exercise 2 – Solution

• First let’s make the grammar unambiguous by 
associating precedence with operators

• In the process we also made sure that the grammar 
does not have left recursion

• ex ::= S + ex |  S

• S ::= ID * S | ID S  | ID 

• Left factorization:

• ex ::= S Z

• Z ::= + ex | 𝜖

• S ::= ID Z2 

• Z2 ::= * S | S  | 𝜖



Exercise 3

Balanced Parentheses over { ( , [ } 

S ::= ( S )| [ S ] | S S | 𝜖

• Find a LL(1) grammar recognizing the language



Exercise 3 - Solution

• S ::= ( S )| [ S ] | S S | 𝜖

• ‘S’ produces epsilon. Hence, we need to first 
eliminate epsilon (discussed later) and then remove 
left recursion from   S ::= S S

• Instead, let’s apply the same logic as removing left 
recursion but without performing all the steps.

• The role of the production S ::= S S is to produce a 
sequence of S  that begin with either ( S ) or [ S ]. i.e,

– ( S ) S S …. S

– [ S ] S S……. S



Exercise 3 - Solution

• Each of the successive S ’es can rewrite to either ( S ) 
or [ S ]. That is, in essence  S ::= S S produces 
sequences given by the regular expression ( ( S ) | [ S 
] ) *

– E.g ( S ) ( S ) [ S ] ( S ) …  is one such sequence

• The same effect can be achieved by the right 
recursive rules  

– S ::= ( S ) S | [ S ] S  | 𝜖

• The above grammar is LL(1)



Exercise 4

Prove that every LL(1) grammar is unambiguous. 



Solution to Exercise 4

The answer is pretty simple. Every production of an 
LL(1) generates a set of strings that is completely 
disjoint from the other production simply because they 
start with different terminals 

Formally, for any string w  there is a unique left most 
derivation. We can prove this by induction over the 
length of w. 



Solution to Exercise 4 [Cont.]

• Claim : for all k, |w| <= k =>  there is a unique left most 
derivation for ‘w’ from every nonterminal N such that N =>* 
w

• Base case, w = 𝜖: claim holds as only one alternative can 
derive epsilon for every nonterminal in an LL(1) grammar

• Inductive case, |w| = k:  Let w = ax where |x| < k  and ‘a’ is a 
terminal of the grammar.

• For every nonterminal N, s.t N =>* w, the first rule that N uses 
is the alternative of N whose First set has ‘a’ 

• Hence, N => 𝑎 𝛼, 𝛼 ⇒∗ 𝑥

• From hypothesis it is easy to show that there is unique 
derivation for 𝛼 ⇒∗ 𝑥

• Hence, the claim holds 



Exercise 5

Say that a grammar has a cycle if there is a reachable,
productive non-terminal A such that A ⇒∗A, i.e. it is 
possible to derive the nonterminal A from A by a 
nonempty sequence of production rules.

Show that if a grammar has a cycle, then it is not LL(1).

(the solution is provided in a separate pdf file in the 
lara wiki)



Exercise 6

Show that the regular languages can be recognized 
with LL(1) parsers. Describe a process that, given a 
regular expression, constructs an LL(1) parser for it.



Solution for Exercise 6

• Let the DFA for the regular language be  A ∶
(Σ, 𝑄, 𝑞0 , 𝛿, 𝐹)

• Define a grammar G: (N, T, P, S) where,

• N =  𝑆𝑖 1 ≤ 𝑖 ≤ 𝑄 }

• T = Σ

• S =  𝑆0

• 𝛿 𝑞𝑖 , 𝑎 = 𝑞𝑗 ⇒ 𝑆𝑖 → 𝑎 𝑆𝑗 ∈ 𝑃

• 𝑞𝑖 ∈ 𝐹 ⇒ 𝑆𝑖 → 𝜖 ∈ 𝑃

L(A) =  L(G)



Exercise 7

Show that the language defined by the  grammar

S -> a S | P  

P -> a P b | a 

cannot have a  LL(1) grammar ?



Exercise 7 Solution

Intuitively, you cannot determine just by looking at the 
current input character whether it will have a matching 
‘b’ or it is an excess ‘a’ that will have not matching ‘b’.

Formally, we can prove this by showing that “For any 
grammar for the language, there exists a nonterminal 
which will have two productions whose first sets will 
intersect”

(the solution is provided in a separate pdf file in the 
lara wiki)


