Exercises on Grammars

1. Consider the following grammar:

S-> (L) | a
L->L,S|S

- Is this grammar ambiguous?
- Is this grammar LL(1) ?
- Compute the First and Follow sets for the new grammar.
- Construct the parsing table for the $\operatorname{LL}(1)$ parser

Finding an LL(1) grammar

- No procedural way ! Practice ...
- But there are some recommended practices that generally help in finding one.
- Eg. try to eliminate left recursion.
- There is a procedure for this but you don't have to faithfully follow the entire approach.
- Just think of what left recursion brings and what can be done to eliminate them

Removing Left Recursion

$S->(L) \mid a$
L->L, S | S

- How does a derivation starting from 'L' look ?
- L $=>L, S$

$$
\begin{aligned}
& =>L, S, S \\
& ={ }^{*} L, S, \ldots, S \\
& =S, \ldots, S
\end{aligned}
$$

- L->L,S|S is equivalent to $L->S, L \mid S$

$$
\begin{aligned}
& S->(L) \mid a \\
& L->S, L \mid S
\end{aligned}
$$

Removing Left Recursion

- In general, $\mathrm{L}->\mathrm{L} \alpha\left|\beta_{1}\right| \ldots \mid \beta_{n}$
- L-> $\beta_{1} Z|\ldots| \beta_{n} Z\left|\beta_{1}\right| \ldots \mid \beta_{n}$
- Z-> α Z| ϵ
- This will remove immediate recursion but only when there are no epsilon productions in the grammar
- Otherwise, we need to remove epsilon productions which will discussed along with CYK parsing
- Removing indirect recursion

$$
\begin{aligned}
& S->L a \\
& L->S a \mid b
\end{aligned}
$$

Removing Left Recursion

- Order nonterminals Eg. (1) S , (2) L
- Enforce that if A -> B then A should precede B in the ordering
- S-> L a and L -> b satisfy the constraint but L-> S a doesn't
- Inline the production of S in $L->S$ a
- We get, L-> La a |b, Remove left recursion.
- Result:L->bZ|b Z->aaZ| ϵ
- If inlining does not result in left recursive production or doesn't satisfy the constraints, inline again.

Example 1 [Cont.]

$$
\begin{aligned}
& S->(L) \mid a \\
& L->L, S \mid S
\end{aligned}
$$

- After eliminating left recursion

S-> (L) |a
L->S,L|S

- Is this LL(1) now?

Example 1 [Cont.]

$$
\begin{aligned}
& S->(L) \mid a \\
& L->L, S \mid S
\end{aligned}
$$

- After eliminating left recursion

S-> (L) |a
L->S,L|S

- Is this LL(1) now?

Left factorization

S-> (L) |a
L->S,L|S

- Identify a common prefix and push the suffixes to a new nonterminal.

S-> (L) |a
L-> S Z
Z->, L| ϵ

- Is this LL(1) now ? Yes

Exercise 2

Consider a grammar for expressions where the multiplication sign is optional.
ex ::= ex + ex | ex * ex | ex ex |ID

- Find a $\mathrm{LL}(1)$ grammar recognizing the same language
- Create the LL(1) parsing table.

Exercise 2 - Solution

- First let's make the grammar unambiguous by associating precedence with operators
- In the process we also made sure that the grammar does not have left recursion
- ex ::=S +ex|S
- S ::= ID * S |ID S | ID
- Left factorization:
- ex ::= S Z
- Z ::= +ex| ϵ
- S ::= ID Z2
- Z2 ::= *S | S | ϵ

Exercise 3

Balanced Parentheses over \{ (, [\}
S ::= (S)|[S]|SS|E

- Find a $\mathrm{LL}(1)$ grammar recognizing the language

Exercise 3 - Solution

- S::= (S)|[S]|SS| ϵ
- ' S ’ produces epsilon. Hence, we need to first eliminate epsilon (discussed later) and then remove left recursion from $\mathrm{S}::=\mathrm{SS}$
- Instead, let's apply the same logic as removing left recursion but without performing all the steps.
- The role of the production $S::=S$ is to produce a sequence of S that begin with either (S) or [S]. i.e,
- (S) S S S
- [S]S S....... S

Exercise 3 - Solution

- Each of the successive S 'es can rewrite to either (S) or [S]. That is, in essence S ::= S S produces sequences given by the regular expression ((S) | [S]) *
- E.g(S)(S)S... is one such sequence
- The same effect can be achieved by the right recursive rules
- S::=(S)S|[S]S| ϵ
- The above grammar is $\mathrm{LL}(1)$

Exercise 4

Prove that every $\mathrm{LL}(1)$ grammar is unambiguous.

Solution to Exercise 4

The answer is pretty simple. Every production of an $\mathrm{LL}(1)$ generates a set of strings that is completely disjoint from the other production simply because they start with different terminals

Formally, for any string w there is a unique left most derivation. We can prove this by induction over the length of w.

Solution to Exercise 4 [Cont.]

- Claim : for all $k,|w|<=k=>$ there is a unique left most derivation for ' w ' from every nonterminal N such that $\mathrm{N}=$ s* * w
- Base case, $w=\epsilon$: claim holds as only one alternative can derive epsilon for every nonterminal in an LL(1) grammar
- Inductive case, $|w|=k$: Let $w=a x$ where $|x|<k$ and ' a ' is a terminal of the grammar.
- For every nonterminal N , s.t $\mathrm{N}=>^{*} \mathrm{w}$, the first rule that N uses is the alternative of N whose First set has ' a '
- Hence, $\mathrm{N}=>a \alpha, \alpha \Rightarrow^{*} x$
- From hypothesis it is easy to show that there is unique derivation for $\alpha \Rightarrow{ }^{*} x$
- Hence, the claim holds

Exercise 5

Say that a grammar has a cycle if there is a reachable, productive non-terminal A such that $A \Rightarrow^{*} A$, i.e. it is possible to derive the nonterminal A from A by a nonempty sequence of production rules.

Show that if a grammar has a cycle, then it is not $\operatorname{LL}(1)$.
(the solution is provided in a separate pdf file in the lara wiki)

Exercise 6

Show that the regular languages can be recognized with $\mathrm{LL}(1)$ parsers. Describe a process that, given a regular expression, constructs an LL(1) parser for it.

Solution for Exercise 6

- Let the DFA for the regular language be A : $\left(\Sigma, Q, q_{0}, \delta, F\right)$
- Define a grammar G: (N, T, P, S) where,
- $\mathrm{N}=\left\{S_{i}|1 \leq i \leq|Q|\}\right.$
- $\mathrm{T}=\Sigma$
- $\mathrm{S}=S_{0}$
- $\delta\left(q_{i}, a\right)=q_{j} \Rightarrow S_{i} \rightarrow a S_{j} \in P$
- $q_{i} \in F \Rightarrow S_{i} \rightarrow \epsilon \in P$

$$
L(A)=L(G)
$$

Exercise 7

Show that the language defined by the grammar S->aS|P
P->aPb|a
cannot have a LL(1) grammar ?

Exercise 7 Solution

Intuitively, you cannot determine just by looking at the current input character whether it will have a matching ' b ' or it is an excess ' a ' that will have not matching ' b '.

Formally, we can prove this by showing that "For any grammar for the language, there exists a nonterminal which will have two productions whose first sets will intersect"
(the solution is provided in a separate pdf file in the lara wiki)

