Exercises on Grammars

1. Consider the following grammar:
S->(L)|a

L->L,S|S

e |s this grammar ambiguous ?

e |s this grammar LL(1) ?

e Compute the First and Follow sets for the new
grammar.

e Construct the parsing table for the LL(1) parser



Finding an LL(1) grammar

e No procedural way ! Practice ...

e But there are some recommended practices that
generally help in finding one.

e Eg. try to eliminate left recursion.

— There is a procedure for this but you don’t have to
faithfully follow the entire approach.

— Just think of what left recursion brings and what can be
done to eliminate them



Removing Left Recursion

S->(L)|a
L->L,S|S
e How does a derivation starting from ‘L" look ?
e L=>L,S
=>1L,S,S
=>*L,S,..,S
=>S,..,S
e L->L,S|S isequivalenttoL->S,L|S
S->(L)|a
L->S,L|S



Removing Left Recursion

Ingeneral, L-> La | f1 | ... | B
L-> ,Blzll,gnzlﬁl | |,Bn
> all|e

This will remove immediate recursion but only when
there are no epsilon productions in the grammar

Otherwise, we need to remove epsilon productions
which will discussed along with CYK parsing

Removing indirect recursion
S->La
L->Sa | b



Removing Left Recursion

Order nonterminals Eg. (1) S, (2) L

Enforce that if A -> B then A should precede B in the
ordering

S->LaandL->Db satisfy the constraint but L->S a
doesn’t

Inline the productionof SinL->S a

Weget,L->Laa | b, Remove left recursion.
— Result: L->bZ | b Z->aalle€

If inlining does not result in left recursive production
or doesn’t satisfy the constraints, inline again.



Example 1 [Cont.]

S->(L)|a
L->L,S|S

e After eliminating left recursion
S->(L)|a

L->S,L|S

e |s this LL(1) now ?



Example 1 [Cont.]

S->(L)|a
L->L,S|S

e After eliminating left recursion
S->(L)|a

L->S,L|S

e |s this LL(1) now ?



Left factorization

S->(L)|a
L->S,L]|S

e |dentify a common prefix and push the suffixes to a
new nonterminal.

S->(L)|a

L->S7Z

Z->,L|e€

e |sthis LL(1) now ? Yes



Exercise 2

Consider a grammar for expressions where the
multiplication sign is optional.

ex::=ex+ex|ex*ex|exex|ID

e Find a LL(1) grammar recognizing the same language
e Create the LL(1) parsing table.



Exercise 2 — Solution

First let’s make the grammar unambiguous by
associating precedence with operators

In the process we also made sure that the grammar
does not have left recursion

ex::=S+ex| S
S:=ID*S|IDS | ID
Left factorization:

ex::=SZ
Z:=+ex| €
S::=1ID Z2

Z2::=*S|S | €



Exercise 3

Balanced Parentheses over {(, [ }
S:=(S)|[S]|SS]| e

e Find a LL(1) grammar recognizing the language



Exercise 3 - Solution

S:=(S)|[S]|SS|e€

‘S” produces epsilon. Hence, we need to first
eliminate epsilon (discussed later) and then remove
left recursion from S::=SS

Instead, let’s apply the same logic as removing left
recursion but without performing all the steps.

The role of the production S ::=S S is to produce a
sequence of S that begin with either (S)or[S]. i.e,

~(S)SS...S



Exercise 3 - Solution

e Each of the successive S 'es can rewrite to either (S )
or [S]. Thatis, in essence S ::=S S produces
sequences given by the regular expression ((S) | [ S
J)*

— Eg(S)(S)[S](S)... isone such sequence

e The same effect can be achieved by the right
recursive rules
—S:=(S)S|[S]S | €

e The above grammar is LL(1)



Exercise 4

Prove that every LL(1) grammar is unambiguous.



Solution to Exercise 4

The answer is pretty simple. Every production of an
LL(1) generates a set of strings that is completely
disjoint from the other production simply because they
start with different terminals

Formally, for any string w there is a unique left most
derivation. We can prove this by induction over the
length of w.



Solution to Exercise 4 [Cont.]

Claim : for all k, |w| <=k => there is a unique left most
derivation for ‘w’ from every nonterminal N such that N =>*
W

Base case, w = €: claim holds as only one alternative can
derive epsilon for every nonterminal in an LL(1) grammar

Inductive case, |w| =k: Let w=ax where |x| <k and ‘@’ is a
terminal of the grammar.

For every nonterminal N, s.t N =>* w, the first rule that N uses
is the alternative of N whose First set has ‘a’

Hence, N=>a a, a 2" x

From hypothesis it is easy to show that there is unique
derivation fora =" x

Hence, the claim holds



Exercise 5

Say that a grammar has a cycle if there is a reachable,
productive non-terminal A such that A =7A, i.e. it is
possible to derive the nonterminal A from A by a
nonempty sequence of production rules.

Show that if a grammar has a cycle, then it is not LL(1).

(the solution is provided in a separate pdf file in the
lara wiki)



Exercise 6

Show that the regular languages can be recognized
with LL(1) parsers. Describe a process that, given a
regular expression, constructs an LL(1) parser for it.



Solution for Exercise 6

e Let the DFA for the regular language be A :
(Z, Qqu 15’F)
e Define agrammar G: (N, T, P, S) where,

e N={S[1=i<|Ql}

e T=X

e S= 5,

¢ §(q,a)=q; >S5, >aS;€EP

e g;EF=>S5 —-€€P
L(A) = L(G)



Exercise 7

Show that the language defined by the grammar
S->aS|P

P->aPb|a

cannot have a LL(1) grammar ?



Exercise 7 Solution

Intuitively, you cannot determine just by looking at the
current input character whether it will have a matching
‘D" or it is an excess ‘@’ that will have not matching ‘b’.

Formally, we can prove this by showing that “For any
grammar for the language, there exists a nonterminal
which will have two productions whose first sets will
intersect”

(the solution is provided in a separate pdf file in the
lara wiki)



