
Exercises on Grammars

1. Consider the following grammar:

S -> (L) | a

L -> L , S | S

• Is this grammar ambiguous ?

• Is this grammar LL(1) ?

• Compute the First and Follow sets for the new
grammar.

• Construct the parsing table for the LL(1) parser

Finding an LL(1) grammar

• No procedural way ! Practice …

• But there are some recommended practices that
generally help in finding one.

• Eg. try to eliminate left recursion.

– There is a procedure for this but you don’t have to
faithfully follow the entire approach.

– Just think of what left recursion brings and what can be
done to eliminate them

Removing Left Recursion

S -> (L) | a

L -> L , S | S

• How does a derivation starting from ‘L’ look ?

• L => L , S

=> L , S , S

=>* L , S , … , S

=> S , … , S

• L -> L , S | S is equivalent to L -> S , L | S

S -> (L) | a

L -> S , L | S

Removing Left Recursion

• In general, L -> L 𝛼 | 𝛽1 | … | 𝛽𝑛
• L -> 𝛽1 Z | … | 𝛽𝑛 Z

• Z -> 𝛼 Z | 𝜖

• This will remove immediate recursion

• But, what if

S -> L a

L -> S a | b

Removing Left Recursion

• Order nonterminals Eg. (1) S , (2) L

• Enforce that if A -> B then A should precede B in the
ordering

• S -> L a and L -> b satisfy the constraint but L -> S a
doesn’t

• Inline the production of S in L -> S a

• L -> L a a

– Remove left recursion. Result ??

– If this wasn’t left recursive or doesn’t satisfy the
constraints, inline again.

Example 1 [Cont.]

S -> (L) | a

L -> L , S | S

• After eliminating left recursion

S -> (L) | a

L -> S , L | S

• Is this LL(1) now ?

Example 1 [Cont.]

S -> (L) | a

L -> L , S | S

• After eliminating left recursion

S -> (L) | a

L -> S , L | S

• Is this LL(1) now ?

Left factorization

S -> (L) | a

L -> S , L | S

• Identify a common prefix and push the suffixes to a
new nonterminal.

S -> (L) | a

L -> S Z

Z -> , L | 𝜖

• Is this LL(1) now ?

Exercise 2

Consider a grammar for expressions where the
multiplication sign is optional.

ex ::= ex + ex | ex * ex | ex ex |ID

• Find a LL(1) grammar recognizing the same language

• Using your grammar to derive a string

• Create the LL(1) parsing table.

Exercise 3

Balanced Parentheses over { (, [}

S ::= (S)| [S] | S S | 𝜖

• Find a LL(1) grammar recognizing the language

Exercise 4

Prove that every LL(1) grammar is unambiguous.

Exercise 5

Say that a grammar has a cycle if there is a reachable,
productive non-terminal A such that A ⇒∗A, i.e. it is
possible to derive the nonterminal A from A by a
nonempty sequence of production rules.

Show that if a grammar has a cycle, then it is not LL(1).

Exercise 6

Show that the regular languages can be recognized
with LL(1) parsers. Describe a process that, given a
regular expression, constructs an LL(1) parser for it.

• 𝑎

• Concatenation: 𝑟1 𝑟2

• Union: 𝑟1 | 𝑟2

• Closure: 𝑟1
∗

