Automating Construction of Lexers



Example in javacc

TOKEN: {

<IDENTIFIER: <LETTER> (<LETTER> | <DIGIT> | " _")* >
<INTLITERAL: <DIGIT> (<DIGIT>)* >

<LETTER: ["a"-"z"] | ["A"-"Z"]>

<DIGIT: ["0"-"9"]>

J
SKIP: {

U T

--> get automatically generated code for lexer!

But how does javacc do it?



Finite Automaton (Finite State Machine)
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e Q- states (nodes in the graph) ‘a""’

* (, - initial state (with '>' sign in drawing)
e O - transitions (labeled edges in the graph)
e F-final states (double circles)



Numbers with Decimal Point
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digit digit™ . digit digit™

What if the decimal part is optional?



Exercise

e Design a DFA which accepts all the numbers written in binary
and divisible by 6. For example your automaton should accept
the words 0, 110 (6 decimal) and 10010 (18 decimal).



Kinds of Finite State Automata
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Interpretation of Non-Determinism

\ a 2 =4a
AL o @ s L(A) = {0,0a]
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e Fora given word (string), a path in automaton lead to
accepting, another to a rejecting state

e Does the automaton accept in such case?

— vyes, if there exists an accepting path in the automaton
graph whose symbols give that word

e Epsilon transitions: traversing them does not consume
anything (empty word)

e More generally, transitions labeled by a word: traversing such
transition consumes that entire word at a time



Regular Expressions and Automata

Theorem:

If Lis a set of words, then it is a value of a
regular expression if and only if it is the set of
words accepted by some finite automaton.

Algorithms:
e regular expression =2 automaton (important!)

e automaton = regular expression (cool)



Recursive Constructions

e Union 1|2

e Concatenation e Y,

e Star ¢*



Eliminating Epsilon Transitions



Exercise: (aa)* | (aaa)™

Construct automaton and eliminate epsilons

‘/'*»O






Determinization: Subset Construction

— keep track of a set of all possible states in which
automaton could be

— view this finite set as one state of new automaton
e Apply to (aa)* | (aaa)*

— can also eliminate epsilons during determinization
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Remark: Relations and Functions

e Relation rcBxC
r={..., (b,cl), (b,c2),...}
e Corresponding function: f: B -> AC) 2¢
f={..(bicL,e2)..}
f(b)={c| (b,c) er}
e Given a state, next-state function returns the
set of new states

— for deterministic automaton,
the set has exactly 1 element



Running NFA in Scala

def o(q : State, a : Char) : Set[States] ={ ... }

def 0'(S : Set[States], a : Char) : Set[States] = {
for (ql <-S, g2 <- 8(g1,a)) yield g2

}

def accepts(input : MyStream[Char]) : Boolean = {

var S : Set[State] = Set(q0) // current set of states
while (linput.EOF) {

val a = input.current

S =0'(S,a) // next set of states

}
I(S.intersect(finalStates).isEmpty)

J



Minimization: Merge States

e Only limit the freedom to merge (prove !=) if
we have evidence that they behave differently
(final/non-final, or leading to states shown !=)

e When we run out of evidence, merge the rest
— merge the states in the previous automaton for
(aa)* | (aaa)*

e Very special case: if successors lead to same
states on all symbols, we know immediately
we can merge

— but there are cases when we can merge even if
successors lead to merged states



Minimization for example
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construction (take two copies of
same automaton and union them).

(@) Here, the special case is sufficient,
aj but in general, we need the above



Clarifications

e Non-deterministic state machines where a
transition on some input is not defined

e We can apply determinization, and we will
end up with
— singleton sets

— empty set (this becomes trap state)

e Trap state: a state that has self-loops for all
symbols, and is non-accepting.



Exercise

Convert the following NFAs to deterministic finite automata.




Complementation, Inclusion,

Equivalence

e Can compute complement: switch accepting
and non-accepting states in deterministic
machine (wrong for non-deterministic)

e \WWe can compute intersection, inclusion,
equivalence

e Intersection: complement union of
complements

e Set difference: intersection with complement
e Inclusion: emptiness of set difference

e Equivalence: two inclusions



Exercise: first, nullable

e For each of the following languages find the
first set. Determine if the language is nullable.

st (alb)* (bld) ((clald)* | a%)) ={a,b, d]
N

— language given by automaton: closurem=f',2,37;

«C\rs’f(A)"{d,q,E) c%




Automated Construction of Lexers

— letry, r,, ..., r,be regular expressions for token classes
— consider combined regular expression: (ry | r, | ... | r, P

— A

— recursively map a regular expression to a non-deterministic
automaton

— eliminate epsilon transitions and determinize
— optionally minimize A, to reduce its size 2 A,

— the result only checks that input can be split into tokens,
does not say how to split it



From (r,|r,]|...]r,)* to a Lexer

e Construct machine for each r, labelling
different accepting states differently

e for each accepting state of r, specify the token
class i being recognized

e longest match rule: remember last token and
input position for a last accepted state

e when no accepting state can be reached
(effectively: when we are in a trap state)

— revert position to last accepted state
— return last accepted token



Exercise: Build Lexical Analyzer Part

For these two tokens, using longest match,

where first has the priority:
@Y | (ol 12)%

z/ng. Z.|
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o} = f1,2]~{12]..- »,wz}_;{;_w /55

binaryToken ::=(z|1)"
ternaryToken ::= (0]1]2)"
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Lexical Analyzer

N binaryToken ::= (z|1)” CO\
2\ternaryToken ::= (0|1]2)°
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Exercise: first, nullable

e For each of the following languages find the
first set. Determine if the language is nullable.

— (alb)*(b]d)((c[ald)* | a¥)

— language given by automaton:




Exercise: Realistic Integer Literals

e |nteger literals are in three forms in Scala: decimal,
hexadecimal and octal. The compiler discriminates different
classes from their beginning.

— Decimal integers are started with a non-zero digit.

— Hexadecimal numbers begin with Ox or 0X and may
contain the digits from 0 through 9 as well as upper or
lowercase digits A to F afterwards.

— |If the integer number starts with zero, it is in octal
representation so it can contain only digits O through 7.

— | or L at the end of the literal shows the number is Long.

e Draw a single DFA that accepts all the allowable integer
literals.

e Write the corresponding regular expression.



Exercise

e Let L be the language of strings A ={<, =}
defined by regexp (<|=]| <====%*), thatis,
L contains <,=, and words <=" for n>2.

e Construct a DFA that accepts L

e Describe how the lexical analyzer will tokenize
the following inputs.



More Questions

e Find automaton or regular expression for:

— Sequence of open and closed parentheses of even
length?

— as many digits before as after decimal point?

— Sequence of balanced parentheses
((()) () -balanced
())(() - not balanced

— Comment as a sequence of space,LF,TAB, and
comments from // until LF

— Nested comments like /* .../* */ ... */




