
Automating Construction of Lexers 



Example in javacc 

TOKEN: { 

    <IDENTIFIER: <LETTER> (<LETTER> | <DIGIT> | "_")* > 

  | <INTLITERAL: <DIGIT> (<DIGIT>)* > 

  | <LETTER: ["a"-"z"] | ["A"-"Z"]> 

  | <DIGIT: ["0"-"9"]> 

} 

SKIP: { 

   " "   |  "\n"   |    "\t" 

} 

--> get automatically generated code for lexer! 

But how does javacc do it? 



Finite Automaton (Finite State Machine) 

•  - alphabet 

• Q - states (nodes in the graph) 

• q0 - initial state (with '>' sign in drawing) 

•  - transitions (labeled edges in the graph) 

• F - final states (double circles) 



Numbers with Decimal Point 

digit digit* . digit digit* 

What if the decimal part is optional? 



Exercise 

• Design a DFA which accepts all the numbers written in binary 
and divisible by 6. For example your automaton should accept 
the words 0, 110 (6 decimal) and 10010 (18 decimal). 



• Deterministic:  is a function 

Kinds of Finite State Automata 

• Otherwise: non-deterministic 



Interpretation of Non-Determinism 

• For a given word (string), a path in automaton lead to 
accepting, another to a rejecting state 

• Does the automaton accept in such case? 

– yes, if there exists an accepting path in the automaton 
graph whose symbols give that word 

• Epsilon transitions: traversing them does not consume 
anything (empty word) 

• More generally, transitions labeled by a word: traversing such 
transition consumes that entire word at a time 



Regular Expressions and Automata 

Theorem: 

If L is a set of words, then it is a value of a 
regular expression if and only if it is the set of 
words accepted by some finite automaton. 

 

Algorithms: 

• regular expression  automaton (important!) 

• automaton  regular expression (cool) 



Recursive Constructions 

• Union 

 

 

• Concatenation 

 

 

• Star 



Eliminating Epsilon Transitions 



Exercise:    (aa)* | (aaa)* 

Construct automaton and eliminate epsilons        





Determinization: Subset Construction 

– keep track of a set of all possible states in which 
automaton could be 

– view this finite set as one state of new automaton 

• Apply to   (aa)* | (aaa)* 

– can also eliminate epsilons during determinization 





Remark: Relations and Functions 

• Relation   r  B x C 
 r = { ..., (b,c1) , (b,c2) ,... } 

• Corresponding function: f : B -> P(C)  2C 

 f = { ... (b,{c1,c2}) ... } 

  f(b) = { c | (b,c)  r } 

• Given a state, next-state function returns the 
set of new states 

– for deterministic automaton,  
the set has exactly 1 element 



Running NFA in Scala 

def (q : State, a : Char) : Set[States] = { ... } 
def '(S : Set[States], a : Char) : Set[States] = { 
   for (q1 <- S, q2 <- (q1,a)) yield q2 
} 

def accepts(input : MyStream[Char]) : Boolean = { 

  var S : Set[State] = Set(q0) // current set of states 
  while (!input.EOF) { 
    val a = input.current 
    S = '(S,a)   // next set of states 
  } 
  !(S.intersect(finalStates).isEmpty) 
} 



Minimization: Merge States 

• Only limit the freedom to merge (prove !=) if 
we have evidence that they behave differently 
(final/non-final, or leading to states shown !=) 

• When we run out of evidence, merge the rest 

– merge the states in the previous automaton for  
 (aa)* | (aaa)* 

• Very special case: if successors lead to same 
states on all symbols, we know immediately 
we can merge 

– but there are cases when we can merge even if 
successors lead to merged states 



Minimization for example 

Start from all accepting disequal  

all non-accepting. 

 

Result:  

only {1} and {2,4} are merged. 

 

 

 

Here, the special case is sufficient, 

but in general, we need the above 

construction (take two copies of  

same automaton and union them). 



Clarifications 

• Non-deterministic state machines where a 
transition on some input is not defined 

• We can apply determinization, and we will 
end up with 

– singleton sets 

– empty set (this becomes trap state) 

• Trap state: a state that has self-loops for all 
symbols, and is non-accepting. 



Exercise 



Complementation, Inclusion, 
Equivalence 

• Can compute complement: switch accepting 
and non-accepting states in deterministic 
machine (wrong for non-deterministic) 

• We can compute intersection, inclusion, 
equivalence 

• Intersection: complement union of 
complements 

• Set difference: intersection with complement 

• Inclusion: emptiness of set difference 

• Equivalence: two inclusions 



Exercise: first, nullable 

• For each of the following languages find the 
first set. Determine if the language is nullable. 

– (a|b)* (b|d) ((c|a|d)* | a*)  

 

– language given by automaton: 



Automated Construction of Lexers 
– let r1, r2, ..., rn be regular expressions for token classes 

– consider combined regular expression:  (r1 | r2 | ... | rn )* 

– recursively map a regular expression to a non-deterministic 
automaton 

– eliminate epsilon transitions and determinize  

– optionally minimize A3 to reduce its size  A4 

– the result only checks that input can be split into tokens, 
does not say how to split it 



From (r1|r2|...|rn )* to a Lexer 

• Construct machine for each ri labelling 
different accepting states differently 

• for each accepting state of ri specify the token 
class i being recognized 

• longest match rule: remember last token and 
input position for a last accepted state 

• when no accepting state can be reached 
(effectively: when we are in a trap state) 

– revert position to last accepted state 

– return last accepted token 



Exercise: Build Lexical Analyzer Part 

For these two tokens, using longest match, 

where first has the priority: 

  binaryToken ::= (z|1)*  
  ternaryToken ::= (0|1|2)*  

 

1111z1021z1  



Lexical Analyzer 

binaryToken ::= (z|1)*  
ternaryToken ::= (0|1|2)*  

 

1111z1021z1  



Exercise: first, nullable 

• For each of the following languages find the 
first set. Determine if the language is nullable. 

– (a|b)*(b|d)((c|a|d)* | a*)  

 

– language given by automaton: 



Exercise: Realistic Integer Literals 
• Integer literals are in three forms in Scala: decimal, 

hexadecimal and octal. The compiler discriminates different 
classes from their beginning.  

– Decimal integers are started with a non-zero digit.  

– Hexadecimal numbers begin with 0x or 0X and may 
contain the digits from 0 through 9 as well as upper or 
lowercase digits A to F afterwards.  

– If the integer number starts with zero, it is in octal 
representation so it can contain only digits 0 through 7.  

– l or L at the end of the literal shows the number is Long.  

• Draw a single DFA that accepts all the allowable integer 
literals. 

• Write the corresponding regular expression. 



Exercise 

• Let L be the language of strings A = {<, =} 
defined by regexp   (<|=| <====*), that is, 
L contains <,=, and words <=n for n>2. 

• Construct a DFA that accepts L 

• Describe how the lexical analyzer will tokenize 
the following inputs. 

1) <===== 

2) ==<==<==<==<== 

3) <=====< 

 



More Questions 

• Find automaton or regular expression for: 

– Sequence of open and closed parentheses of even 
length? 

– as many digits  before as after decimal point? 

– Sequence of balanced parentheses 
 ( ( () )  ()) - balanced 
  ( ) ) ( ( )   - not balanced 

– Comment as a sequence of space,LF,TAB, and 
comments from // until LF 

– Nested comments like     /*  ... /*   */  … */ 


